Therapeutic potential of gasotransmitters for cold stress-related cardiovascular disease

Haijian Sun, Xiaowei Nie, Kangying Yu, Jinsong Bian

PDF(1628 KB)
PDF(1628 KB)
Frigid Zone Medicine ›› 2022, Vol. 2 ›› Issue (1) : 10-24. DOI: 10.2478/fzm-2022-0002
REVIEW

Therapeutic potential of gasotransmitters for cold stress-related cardiovascular disease

Author information +
History +

Abstract

Growing evidence has shown that exposure to low ambient temperature poses a huge challenge to human health globally. Actually, cold stress is closely associated with a higher incidence of cardiovascular morbidity and mortality in winter or in cold regions. Cellular and molecular mechanisms underlying cardiovascular complications in response to cold exposure have yet to be fully clarified. Considering that cold exposure is an important risk of cardiovascular complications, it is necessary to clarify the molecular mechanism of cold stress-induced cardiovascular diseases and to develop effective intervention strategies. Hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO) are well-known gasotransmitters that are endogenously produced in many biological systems. Accumulating studies have demonstrated that these gasotransmitters play a critical role in a wide spectrum of physiological and/or pathophysiological processes by regulating numerous signaling pathways. These gas signal molecules are emerging as important players in cardiovascular homeostasis, and disruption of these gasotransmitters is critically implicated in cardiovascular anomalies, such as hypertension, atherosclerosis, myocardial ischemia, heart failure, and stroke. Also, evidence is emerging that H2S, NO, and CO may be involved in the pathologies of cold stress-induced cardiovascular ailments. In this review, we aim to highlight and discuss the recent advances towards the development of gasotransmitters-based therapeutics for cold stress-related cardiovascular pathogenesis. We believe that the effects of H2S, NO, and CO on cardiovascular regulation under cold environment will attract tremendous interest in the near future as they serve as novel regulators of cardiovascular biology in cold environment.

Keywords

cold stress / cardiovascular diseases / hydrogen sulfide / nitric oxide / carbon monoxide

Cite this article

Download citation ▾
Haijian Sun, Xiaowei Nie, Kangying Yu, Jinsong Bian. Therapeutic potential of gasotransmitters for cold stress-related cardiovascular disease. Frigid Zone Medicine, 2022, 2(1): 10‒24 https://doi.org/10.2478/fzm-2022-0002

References

[[1]]
Patz J A, Campbell L D, Holloway T, et al. Impact of regional climate change on human health. Nature, 2005; 438(7066): 310-317.
[[2]]
Bezirtzoglou C, Dekas K, Charvalos E. Climate changes, environment and infection: facts, scenarios and growing awareness from the public health community within Europe. Anaerobe, 2011; 17(6): 337-340.
[[3]]
Tansey E A, Johnson C D. Recent advances in thermoregulation. Adv Physiol Educ, 2015; 39(3): 139-148.
[[4]]
Nakamura K. Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol, 2011; 301(5): R1207-1228.
[[5]]
Cheshire W P. Thermoregulatory disorders and illness related to heat and cold stress. Auton Neurosci, 2016; 196: 91-104.
[[6]]
Castellani J W, Tipton M J. Cold stress effects on exposure tolerance and exercise performance. Compr Physiol, 2015; 6(1): 443-469.
[[7]]
Holm R I. Strategies for prevention of cold stress in the elderly. Int J Circumpolar Health, 2000; 59(3-4): 267-272.
[[8]]
Näyhä S. Environmental temperature and mortality. Int J Circumpolar Health, 2005; 64(5): 451-458.
[[9]]
Keatinge W R, Donaldson G C. Cardiovascular mortality in winter. Arctic Med Res, 1995; 54(Suppl 2): 16-18.
[[10]]
Mercer J B. Cold-an underrated risk factor for health. Environ Res, 2003; 92(1): 8-13.
[[11]]
Strand B H, Tverdal A. Can cardiovascular risk factors and lifestyle explain the educational inequalities in mortality from ischaemic heart disease and from other heart diseases? 26 year follow up of 50,000 Norwegian men and women. J Epidemiol Community Health, 2004; 58(8): 705-709.
[[12]]
Phung D, Thai P K, Guo Y, et al. Ambient temperature and risk of cardiovascular hospitalization: an updated systematic review and meta-analysis. Sci Total Environ, 2016; 550: 1084-1102.
[[13]]
Baker B A. Winter weather and cardiovascular mortality in Minneapolis-St. Paul. Am J Public Health, 1982; 72(3): 261-265.
[[14]]
Schumann B, Erling H L, Karlsson L. Weather extremes and perinatal mortality-seasonal and ethnic differences in northern Sweden, 1800-1895. PloS One, 2019; 14(10): e0223538.
[[15]]
Eng H, Mercer J B. Seasonal variations in mortality caused by cardiovascular diseases in Norway and Ireland. J Cardiovasc Risk, 1998; 5(2): 89-95.
[[16]]
Wang B, Chai G, Sha Y, et al. Impact of ambient temperature on cardiovascular disease hospital admissions in farmers in China’s Western suburbs. Sci Total Environ, 2021; 761: 143254.
[[17]]
Danet S, Richard F, Montaye M, et al. Unhealthy effects of atmospheric temperature and pressure on the occurrence of myocardial infarction and coronary deaths. A 10-year survey: the lille-world health organization MONICA project (monitoring trends and determinants in cardiovascular disease). Circulation, 1999; 100(1): E1-E7.
[[18]]
The Eurowinter Group. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. The Eurowinter Group. Lancet, 1997; 349(9062): 1341-1346.
[[19]]
Bull G M, Morton J. Environment, temperature and death rates. Age Ageing, 1978; 7(4): 210-224.
[[20]]
Donaldson G C, Tchernjavskii V E, Ermakov S P, et al. Winter mortality and cold stress in Yekaterinburg, Russia: interview survey. BMJ, 1998; 316(7130): 514-518.
[[21]]
Pan W H, Li L A, Tsai M J. Temperature extremes and mortality from coronary heart disease and cerebral infarction in elderly Chinese. Lancet, 1995; 345(8946): 353-355.
[[22]]
Rogot E, Padgett S J. Associations of coronary and stroke mortality with temperature and snowfall in selected areas of the United States, 1962-1966. Am J Epidemiol, 1976; 103(6): 565-575.
[[23]]
Näyhä S, Hassi J. Cold and mortality from ischaemic heart disease in northern Finland. Arctic Med Res, 1995; 54(Suppl 2): 19-25.
[[24]]
Sun Z. Cardiovascular responses to cold exposure. Front Biosci, 2010; 2: 495-503.
[[25]]
Näyhä S. Cold and the risk of cardiovascular diseases. A review. Int J Circumpolar Health, 2002; 61(4): 373-380.
[[26]]
Stout R W, Crawford V. Seasonal variations in fibrinogen concentrations among elderly people. Lancet, 1991; 338(8758): 9-13.
[[27]]
Neild P J, Stndercombe C D, Keatinge W R, et al. Cold-induced increases in erythrocyte count, plasma cholesterol and plasma fibrinogen of elderly people without a comparable rise in protein C or factor X. Clin Sci, 1994; 86(1): 43-48.
[[28]]
Lloyd E L. The role of cold in ischaemic heart disease: a review. Public Health, 1991; 105(3): 205-215.
[[29]]
Donldson G C, Keatinge W R. Early increases in ischaemic heart disease mortality dissociated from and later changes associated with respiratory mortality after cold weather in south east England. J Epidemiol Community Health, 1997; 51(6): 643-648.
[[30]]
Donldson N G C, Robinson D, Allaway S L. An analysis of arterial disease mortality and BUPA health screening data in men, in relation to outdoor temperature. Clin Sci, 1997; 92(3): 261-268.
[[31]]
Bainton D, Jones G R, Hole D. Influenza and ischaemic heart disease--a possible trigger for acute myocardial infarction? Int J Epidemiolo, 1978; 7(3): 231-239.
[[32]]
Syrj N J. Is there a link between infection and infarction? Ann Clin Res, 1988; 20(3): 151-153.
[[33]]
Wareham L K, Southam H M, Poole R K. Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as ‘gasotransmitters’ in bacteria? Biochemical Society Transactions, 2018; 46(5): 1107-1118.
[[34]]
Linden D R. Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid Redox Signal, 2014; 20(5): 818-830.
[[35]]
Lin Y H, Liu Y P, Lin Y C, et al. Characterization of the role of endogenous nitric oxide in myogenic vascular oscillations during cooling-evoked hemodynamic perturbations of rats. Can J Physiol Pharmacol, 2017; 95(7): 803-810.
[[36]]
Du X, Jin Z, Liu Z, et al. H2S persulfidated and increased kinase activity of MPK 4 to response cold stress in arabidopsis. Front Mol Biosci, 2021; 8: 635470.
[[37]]
Pankow D, Ponsold W. Effect of cold exposure on carbon monoxide-induced adaptive reactions in the rat. Zeitschrift fur Die Gesamte Hygiene und Ihre Grenzgebiete, 1984; 30(6): 330-331.
[[38]]
Liu C, Yavar Z, Sun Q. Cardiovascular response to thermoregulatory challenges. Am J Physiol Heart Circ Physiol, 2015; 309(11): H1793-H1812.
[[39]]
Ryti N R, Guo Y, Jaakkola J J. Global association of cold spells and adverse health effects: a systematic review and meta-analysis. Environmental Health Perspectives, 2016; 124(1): 12-22.
[[40]]
Fares A. Winter cardiovascular diseases phenomenon. North Am J Med Sci, 2013; 5(4): 266-279.
[[41]]
Ryti N R I, Mäkikyrö E M S, Antikainen H, et al. Risk of sudden cardiac death in relation to season-specific cold spells: a case-crossover study in Finland. BMJ Open, 2017; 7(11): e017398.
[[42]]
Ikäheimo T M, Lehtinen T, Antikainen R, et al. Cold-related cardiorespiratory symptoms among subjects with and without hypertension: the National FINRISK Study 2002. Eur J Public Health, 2014; 24(2): 237-243.
[[43]]
Nagarajan V, Fonarow G C, Ju C, et al. Seasonal and circadian variations of acute myocardial infarction: Findings from the Get With The Guidelines-Coronary Artery Disease (GWTG-CAD) program. Am Heart J, 2017; 189: 85-93.
[[44]]
Libby P, Ridker P M, Hansson G K. Progress and challenges in translating the biology of atherosclerosis. Nature, 2011; 473(7347): 317-325.
[[45]]
Braun R C. A natural-history study of coronary disease. The New England Journal of Medicine, 2011; 364(15): 1469.
[[46]]
Wolf K, Schneider A, Breitner S, et al. Air temperature and the occurrence of myocardial infarction in Augsburg, Germany. Circulation, 2009; 120(9): 735-742.
[[47]]
Ikäheimo T M. Cardiovascular diseases, cold exposure and exercise. Temperature (Austin, Tex), 2018; 5(2): 123-146.
[[48]]
Matthews E L, Greaney J L, Wenner M M. Rapid onset pressor response to exercise in young women with a family history of hypertension. Experimental Physiology, 2017; 102(9): 1092-1099.
[[49]]
Hintsala H, Kandelberg A, Herzig K H, et al. Central aortic blood pressure of hypertensive men during short-term cold exposure. Am J Hypertens, 2014; 27(5): 656-664.
[[50]]
Fregly M J, Rossi F, Sun Z, et al. Effect of chronic treatment with prazosin and L-arginine on the elevation of blood pressure during cold exposure. Pharmacology, 1994; 49(6): 351-362.
[[51]]
Sun Z, Cade R, Katovich M J, et al. Body fluid distribution in rats with cold-induced hypertension. Physiol Behav, 1999; 65(4-5): 879-884.
[[52]]
Sun Z, Cade R, Morales C. Role of central angiotensin II receptors in cold-induced hypertension. Am J Hypertens, 2002; 15(1 Pt 1): 85-92.
[[53]]
Bell A W, Thompson G E. The effects of acute cold exposure and feeding on the circulation of the young ox (Bos taurus), with special reference to the hind leg. Res Vet Sci, 1974; 17(3): 384-389.
[[54]]
Van B P, Fregly M J, Rossi F, et al. The effect of intermittent exposure to cold on the development of hypertension in the rat. Am J Hypertens, 1992; 5(8): 548-555.
[[55]]
Barney C C, Katovich M J, Fregly M J, et al. Changes in beta-adrenergic responsiveness of rats during chronic cold exposure. J Appl Physiol, 1980; 49(6): 923-929.
[[56]]
Sun H J. Current opinion for hypertension in renal fibrosis. Adv Exp Med Biol, 2019; 1165: 37-47.
[[57]]
Zhang J R, Sun H J. Extracellular vesicle-mediated vascular cell communications in hypertension: mechanism insights and therapeutic potential of ncRNAs. Cardiovasc Drugs Ther, 2020. Online ahead of print.
[[58]]
Xiong Y, Xiong Y, Zhu P, et al. The role of gut microbiota in hypertension pathogenesis and the efficacy of antihypertensive drugs. Curr Hypertens Rep, 2021; 23(8): 40.
[[59]]
Sun Z, Cade R, Zhang Z, et al. Angiotensinogen gene knockout delays and attenuates cold-induced hypertension. Hypertension (Dallas, Tex: 1979), 2003; 41(2): 322-327.
[[60]]
Chen P G, Sun Z. AAV Delivery of endothelin-1 shRNA attenuates cold-induced hypertension. Human Gene Therapy, 2017; 28(2): 190-199.
[[61]]
Cheema A N, Yanagawa B, Verma S, et al. Myocardial infarction with nonobstructive coronary artery disease (MINOCA): a review of pathophysiology and management. Curr Opin Cardiol, 2021; 36(5): 589-596.
[[62]]
Dong M, Yang X, Lim S, et al. Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis. Cell Metab, 2013; 18(1): 118-129.
[[63]]
Areskog N H, Lassvik C. Angina pectoris in the cold. Arctic Med Res, 1988; 47(Suppl 1): 269-271.
[[64]]
Cheng J, Su H, Xu Z, et al. Extreme temperature exposure and acute myocardial infarction: Elevated risk within hours? Environ Res, 2021; 202: 111691.
[[65]]
Ryti N R, Mäkikyrö E M, Antikainen H, et al. Cold spells and ischaemic sudden cardiac death: effect modification by prior diagnosis of ischaemic heart disease and cardioprotective medication. Sci Rep, 2017; 7: 41060.
[[66]]
Mudge G H, Grossman W, Mills R M, et al. Reflex increase in coronary vascular resistance in patients with ischemic heart disease. Ne Engl J Med, 1976; 295(24): 1333-1337.
[[67]]
Zeiher A M, Drexler H, Wollschlaeger H, et al. Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J Am Coll Cardiol, 1989; 14(5): 1181-1190.
[[68]]
Sevre K, Rostrup M. Blood pressure and heart rate responses to cold pressor test in patients admitted to hospital due to chest pain. Blood Press, 1999; 8(2): 110-113.
[[69]]
Mcmurray J J, Adamopoulos S, Anker S D, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the european society of cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J, 2012; 33(14): 1787-1847.
[[70]]
Budts W, Roos J, R Dle H T, et al. Treatment of heart failure in adult congenital heart disease: a position paper of the Working Group of Grown-Up Congenital Heart Disease and the Heart Failure Association of the European Society of Cardiology. Eur Heart J, 2016; 37(18): 1419-1427.
[[71]]
Ponikowski P, Voors A A, Anker S D, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J, 2016; 37(27): 2129-2200.
[[72]]
Forcey D S, Fitzgerald M P. ‘Cold and lonely’: emergency presentations of patients with hypothermia to a large Australian health network. Intern Med J, 2020; 50(1): 54-60.
[[73]]
Radtke T, Poerschke D, Wilhelm M, et al. Acute effects of Finnish sauna and cold-water immersion on haemodynamic variables and autonomic nervous system activity in patients with heart failure. Eur J Prev Cardiol, 2016; 23(6): 593-601.
[[74]]
Huang Y Q, Jin H F, Zhang H, et al. Interaction among hydrogen sulfide and other gasotransmitters in mammalian physiology and pathophysiology. Adv Exp Med Biol, 2021; 1315: 205-236.
[[75]]
Guerra D D, Hurt K J. Gasotransmitters in pregnancy: from conception to uterine involution. Biol Reprod, 2019; 101(1): 4-25.
[[76]]
Wang R. Gasotransmitters: growing pains and joys. Trends Biochem Sci, 2014; 39(5): 227-232.
[[77]]
Kajimura M, Fukuda R, Bateman R M, et al. Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal, 2010; 13(2): 157-192.
[[78]]
Polhemus D J, Lefer D J. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res, 2014; 114(4): 730-737.
[[79]]
Lancaster J R. Historical origins of the discovery of mammalian nitric oxide (nitrogen monoxide) production/physiology/pathophysiology. Biochem Pharmacol, 2020; 176: 113793.
[[80]]
Durante W. Carbon monoxide and bile pigments: surprising mediators of vascular function. Vascular Medicine, 2002; 7(3): 195-202.
[[81]]
Kimura H. The physiological role of hydrogen sulfide and beyond. Nitric Oxide, 2014; 41: 4-10.
[[82]]
Hsu C N, Tain Y L. Gasotransmitters for the therapeutic prevention of hypertension and kidney disease. Int J Mol Sci, 2021, 22(15): 7808.
[[83]]
Rengarajan A, Msuro A K, Boeldt D S. Maternal disease and gasotransmitters. Nitric Oxide, 2020; 96: 1-12.
[[84]]
Tran Q K, Leonard J, Black D J, et al. Effects of combined phosphorylation at Ser-617 and Ser-1179 in endothelial nitric-oxide synthase on EC50(Ca2+) values for calmodulin binding and enzyme activation. J Biol Chem, 2009; 284(18): 11892-11899.
[[85]]
Boeldt D S, Yi F X, Bird I M. eNOS activation and NO function: pregnancy adaptive programming of capacitative entry responses alters nitric oxide (NO) output in vascular endothelium--new insights into eNOS regulation through adaptive cell signaling. J Endocrinol, 2011; 210(3): 243-258.
[[86]]
Förstermann U, Sessa W C. Nitric oxide synthases: regulation and function. Eur Heart J, 2012; 33(7): 829-837, 37a-37d.
[[87]]
Rochette L, Lorin J, Zeller M, et al. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? Pharmacol Ther, 2013; 140(3): 239-257.
[[88]]
Francis S H, Busch J L, Corbin J D, et al. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev, 2010; 62(3): 525-563.
[[89]]
Wurm C J, Lindermayr C. Nitric oxide signaling in the plant nucleus: the function of nitric oxide in chromatin modulation and transcription. J Exp Bot, 2021; 72(3): 808-818.
[[90]]
Keszler A, Zhang Y, Hogg N. Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: How are S-nitrosothiols formed? Free Radic Biol Med, 2010; 48(1): 55-64.
[[91]]
Tenhunen R, Marver H S, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A, 1968; 61(2): 748-755.
[[92]]
Applegate L A, Luscher P, Tyrrell R M. Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res, 1991; 51(3): 974-978.
[[93]]
Ryter S W, Morse D, Choi A M. Carbon monoxide: to boldly go where NO has gone before. Science’s STKE: signal transduction knowledge environment, 2004; 2004(230): Re6.
[[94]]
Mccoubrey W K, Huang T J, Maines M D. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem, 1997; 247(2): 725-732.
[[95]]
Maines M D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J, 1988; 2(10): 2557-2568.
[[96]]
Chen Y, Zhang F, Yin J, et al. Protective mechanisms of hydrogen sulfide in myocardial ischemia. J Cell Physiol, 2020; 235(12): 9059-9070.
[[97]]
Wen Y D, Wang H, Zhu Y Z. The drug developments of hydrogen sulfide on cardiovascular disease. Oxid Med Cell Longev, 2018; 2018: 4010395.
[[98]]
Sun H J, Wu Z Y, Nie X W, et al. The Role of H2S in the Metabolism of Glucose and Lipids. Adv Exp Med Biol, 2021; 1315: 51-66.
[[99]]
Sun H J, Wu Z Y, Nie X W, et al. Implications of hydrogen sulfide in liver pathophysiology: mechanistic insights and therapeutic potential. J Adv Res, 2021; 27: 127-135.
[[100]]
Sun H J, Wu Z Y, Nie X W, et al. Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol, 2019; 10: 1568.
[[101]]
Kanagy N L, Szabo C, Papapetropoulos A. Vascular biology of hydrogen sulfide. Am J Physiol Cell Physiol, 2017; 312(5): c537-c549.
[[102]]
Sun H J, Wu Z Y, Nie X W, et al. Role of hydrogen sulfide and polysulfides in neurological diseases: focus on protein S-persulfidation. Current Neuropharmacology, 2021; 19(6): 868-884.
[[103]]
Zhao Q, Gu D, Lu F, et al. Blood pressure reactivity to the cold pressor test predicts hypertension among Chinese adults: the GenSalt study. Am J Hypertens, 2015; 28(11): 1347-1354.
[[104]]
Menkes M S, Matthews K A, Krantz D S, et al. Cardiovascular reactivity to the cold pressor test as a predictor of hypertension. Hypertension (Dallas, Tex : 1979), 1989; 14(5): 524-530.
[[105]]
Psrk J, Middlekauff H R, Campese V M. Abnormal sympathetic reactivity to the cold pressor test in overweight humans. Am J Hypertens, 2012; 25(12): 1236-1241.
[[106]]
Grassi G, Biffi A, Seravalle G, et al. Sympathetic neural overdrive in the obese and overweight state. Hypertension, 2019; 74(2): 349-358.
[[107]]
Manou S V, Goodwin C D, Patterson T, et al. The effects of cold and exercise on the cardiovascular system. Heart (British Cardiac Society), 2015; 101(10): 808-820.
[[108]]
Ochiai M, Hayashi T, Morita M, et al. Short-term effects of L-citrulline supplementation on arterial stiffness in middle-aged men. Int J Cardiol, 2012; 155(2): 257-261.
[[109]]
Figueroa A, Trivino J A, Sanchez M A, et al. Oral L-citrulline supplementation attenuates blood pressure response to cold pressor test in young men. Am J Hypertens, 2010; 23(1): 12-16.
[[110]]
Figueroa A, Alvarez A S, Jaime S J, et al. l-Citrulline supplementation attenuates blood pressure, wave reflection and arterial stiffness responses to metaboreflex and cold stress in overweight men. Br J Nutr, 2016; 116(2): 279-285.
[[111]]
Shechtman O, Fregly M J, Van B P, et al. Prevention of cold-induced increase in blood pressure of rats by captopril. Hypertension (Dallas, Tex : 1979), 1991; 17(6 Pt 1): 763-770.
[[112]]
Skutecki R, Jalali R, Dragańska E, et al. UTCI as a bio-meteorological tool in the assessment of cold-induced stress as a risk factor for hypertension. Sci Total Environ, 2019; 688: 970-975.
[[113]]
Roukoyatkina N I, Chefer S I, Rifkind J, et al. Cold acclimation-induced increase of systolic blood pressure in rats is associated with volume expansion. Am J Hypertens, 1999; 12(1 Pt 1):54-62.
[[114]]
Peng J F, Phillips M I. Opposite regulation of brain angiotensin type 1 and type 2 receptors in cold-induced hypertension. Regul Pept, 2001; 97(2-3):91-102.
[[115]]
Cárnio E C, Branco L G. Participation of the nitric oxide pathway in cold-induced hypertension. Life Sci, 1997; 60(21): 1875-1880.
[[116]]
Shi H M, He L H, Zhang Y, et al. Changes of nitric oxide and nitric-oxide synthase in the development of cold-induced hypertension. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2007; 25(4): 197-199.
[[117]]
Zhang S, Zhang Y, Ahsan M Z, et al. Atorvastatin attenuates cold-induced hypertension by preventing gut barrier injury. J Cardiovasc Pharmacol 2019; 74(2): 143-151.
[[118]]
Zhu Z, Zhu S, Zhu J, et al. Endothelial dysfunction in cold-induced hypertensive rats. Am J Hypertens, 2002; 15(2 Pt 1):176-180.
[[119]]
Qian L, Pan N, Gong J. Change of NOS activity in hypoxia and cold-induced blood vessels damage and its biological significance. Zhonghua Yu Fang Yi Xue Za Zhi, 2001; 35(1): 57-60.
[[120]]
Sun C F, Wang S G, Peng Y G, et al. Intervention of systolic pressure and left ventricular hypertrophy in rats under cold stress. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2016; 34(6): 438-443.
[[121]]
O’brien C. Reproducibility of the cold-induced vasodilation response in the human finger. J Appl Physiol, 2005; 98(4): 1334-1340.
[[122]]
Daanen H A. Finger cold-induced vasodilation: a review. European J Appl Physiol, 2003; 89(5): 411-426.
[[123]]
Aubdool A A, Graepel R, Kodji X, et al. TRPA1 is essential for the vascular response to environmental cold exposure. Nature Commun, 2014; 5: 5732.
[[124]]
Corson M A, James N L, Latta S E, et al. Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress. Circ Res, 1996; 79(5): 984-991.
[[125]]
Boo Y C, Sorescu G, Boyd N, et al. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser 1179 by Akt-independent mechanisms: role of protein kinase A. J Biol Chem, 2002; 277(5): 3388-3396.
[[126]]
Binti I K, Kawawaki N, Ueyama K, et al. Effects of cold exposure and shear stress on endothelial nitric oxide synthase activation. Biochem Biophys Res Commun, 2011; 412(2): 318-322.
[[127]]
Sun Z, Fregly M J, Cade J R. Effect of renal denervation on elevation of blood pressure in cold-exposed rats. Can J Physiol Pharmacol, 1995; 73(1): 72-78.
[[128]]
Sun Z, Cade J R, Fregly M J. Cold-induced hypertension. A model of mineralocorticoid-induced hypertension. Ann N Y Acad Sci, 1997; 813: 682-688.
[[129]]
Baron A, Riesselmann A, Fregly M J. Effect of chronic treatment with clonidine and spironolactone on cold-induced elevation of blood pressure. Pharmacology, 1991; 43(4): 173-186.
[[130]]
Peng J F, Kimura B, Fregly M J, et al. Reduction of cold-induced hypertension by antisense oligodeoxynucleotides to angiotensinogen mRNA and AT1-receptor mRNA in brain and blood. Hypertension (Dallas, Tex : 1979), 1998; 31(6): 1317-1323.
[[131]]
Sun Z, Wang X, Wood C E, et al. Genetic AT1A receptor deficiency attenuates cold-induced hypertension. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2005; 288(2): R433-R439.
[[132]]
Wang X, Cade R, Sun Z. Human eNOS gene delivery attenuates cold-induced elevation of blood pressure in rats. Am J Physiol Heart Circ Physiol, 2005; 289(3): H1161-1168.
[[133]]
Al-ayadhi L Y, Korish A A, Al-tuwaijri A S. The effect of vitamin E, L-arginine, N-nitro L-arginine methyl ester and forskolin on endocrine and metabolic changes of rats exposed to acute cold stress. Saudi Med J, 2006; 27(1): 17-22.
[[134]]
Korac A, Buzadzic B, Petrovic V, et al. The role of nitric oxide in remodeling of capillary network in rat interscapular brown adipose tissue after long-term cold acclimation. Histol Histopathol, 2008; 23(4): 441-450.
[[135]]
Wu L, Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev, 2005; 57(4): 585-630.
[[136]]
Ryter S W, Alam J, Choi A M. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev, 2006; 86(2): 583-650.
[[137]]
Kim H H, Choi S. Therapeutic aspects of carbon monoxide in cardiovascular disease. Int J Mol Sci, 2018, 19(8): 2381.
[[138]]
Gautier H, Murariu C, Bonora M. Ventilatory and metabolic responses to ambient hypoxia or hypercapnia in rats exposed to CO hypoxia. J Appl Physiol, 1997; 83(1): 253-261.
[[139]]
Fahey P J, Utell M J, Condemi J J, et al. Raynaud’s phenomenon of the lung. Am J Med, 1984; 76(2): 263-269.
[[140]]
Barr W G, Fahey P J. Reduction of pulmonary capillary blood volume following cold exposure in patients with Raynaud’s phenomenon. Chest, 1988; 94(6): 1195-1199.
[[141]]
Balestrasse K B, Tomaro M L, Batlle A, et al. The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. Phytochemistry, 2010; 71(17-18): 2038-2045.
[[142]]
Broder J, Mehrotra A, Tintinalli J. Injuries from the 2002 North Carolina ice storm, and strategies for prevention. Injury, 2005; 36(1): 21-26.
[[143]]
Oh B J, Im Y G, Park E, et al. Treatment of acute carbon monoxide poisoning with induced hypothermia. Clin Exp Emerg Med, 2016; 3(2): 100-104.
[[144]]
Park E, Ahn J, Min Y G, et al. The usefulness of the serum s100b protein for predicting delayed neurological sequelae in acute carbon monoxide poisoning. Clin Toxicol (Phila), 2012; 50(3): 183-188.
[[145]]
Jung Y S, Lee J S, Min Y G, et al. Carbon monoxide-induced cardiomyopathy. Circ J, 2014; 78(6): 1437-1444.
[[146]]
Motterlini R, Otterbein L E. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov, 2010; 9(9): 728-743.
[[147]]
Testai L, Citi V, Martelli A, et al. Role of hydrogen sulfide in cardiovascular ageing. Pharmacological Research, 2020; 160: 105125.
[[148]]
Zhang H, Bai Z, Zhu L, et al. Hydrogen sulfide donors: Therapeutic potential in anti-atherosclerosis. Eur J Med Chem, 2020; 205: 112665.
[[149]]
Teoh J P, Li X, Simoncini T, et al. Estrogen-Mediated Gaseous Signaling Molecules in Cardiovascular Disease. Trends Endocrinol Metab, 2020; 31(10): 773-784.
[[150]]
Gorini F, Bustaffa E, Chatzianagnostou K, et al. Hydrogen sulfide and cardiovascular disease: Doubts, clues, and interpretation difficulties from studies in geothermal areas. Sci Total Environ, 2020; 743: 140818.
[[151]]
Luo W, Gui D D, Yan B J, et al. Hydrogen Sulfide Switch Phenomenon Regulating Autophagy in Cardiovascular Diseases. Cardiovasc Drugs Ther, 2020; 34(1): 113-121.
[[152]]
Rose P, Moore P K, Zhu Y Z. Garlic and gaseous mediators. Trends in Pharmacological Sciences, 2018; 39(7): 624-634.
[[153]]
Pan L L, Qin M, Liu X H, et al. The role of hydrogen sulfide on cardiovascular homeostasis: an overview with update on immunomodulation. Front Pharmacol, 2017; 8: 686.
[[154]]
Wang M J, Cai W J, Zhu Y C. Hydrogen sulphide in cardiovascular system: A cascade from interaction between sulphur atoms and signalling molecules. Life Sci, 2016; 153: 188-197.
[[155]]
Li Z, Polhemus D J, Lefer D J. Evolution of hydrogen sulfide therapeutics to treat cardiovascular disease. Circ Res, 2018; 123(5): 590-600.
[[156]]
Yu X H, Cui L B, Wu K, et al. Hydrogen sulfide as a potent cardiovascular protective agent. Clin Chim Acta, 2014; 437: 78-87.
[[157]]
Minasian S M, Galagudza M M, Dmitriev Y V, et al. Preservation of the donor heart: from basic science to clinical studies. Interact Cardiovasc Thorac Surg, 2015; 20(4): 510-519.
[[158]]
Zhu C, Su Y, Juriasingani S, et al. Supplementing preservation solution with mitochondria-targeted H(2) S don or AP39 protects cardiac grafts from prolonged cold ischemia-reperfusion injury in heart transplantation. Am J Transplant, 2019; 19(11): 3139-3148.
[[159]]
Lobb I, Jiang J, Lian D, et al. Hydrogen sulfide protects renal grafts against prolonged cold ischemia-reperfusion injury via specific mitochondrial actions. Am J Transplant, 2017; 17(2): 341-352.
[[160]]
Juriasingani S, Akbari M, Chan J Y, et al. H2S supplementation: a novel method for successful organ preservation at subnormothermic temperatures. Nitric Oxide, 2018; 81: 57-66.
[[161]]
Dugbartey G J, Bouma H R, Saha M N, et al. A hibernation-like state for transplantable organs: is hydrogen sulfide therapy the future of organ preservation? Antioxid Redox Signal, 2018; 28(16): 1503-1515.
[[162]]
Citi V, Martelli A, Gorica E, et al. Role of hydrogen sulfide in endothelial dysfunction: Pathophysiology and therapeutic approaches. J Adv Res, 2021; 27: 99-113.
[[163]]
Lv B, Chen S, Tang C, et al. Hydrogen sulfide and vascular regulation-An update. J Adv Res, 2021; 27: 85-97.
[[164]]
Dong E, Kiss L. The potential role of hydrogen sulfide in the regulation of cerebrovascular tone. Biomolecules, 2020; 10(12): 1685.
[[165]]
Graham T E. Thermal, metabolic, and cardiovascular changes in men and women during cold stress. Med Sci Sports Exerc, 1988; 20(5 Suppl): S185-S192.
[[166]]
Achebak H, Devolder D, Ballester J. Trends in temperature-related age-specific and sex-specific mortality from cardiovascular diseases in Spain: a national time-series analysis. Lancet Planet Health, 2019; 3(7): e297-e306.
[[167]]
Mugele H, Oliver S J. Integrative crosstalk between hypoxia and the cold: Old data and new opportunities. Exp Physiol, 2021; 106(1): 350-358.
[[168]]
Johoston C E, White M D, Wu M, et al. Eucapnic hypoxia lowers human cold thermoregulatory response thresholds and accelerates core cooling. J Appl Physiol, 1996; 80(2): 422-429.
PDF(1628 KB)

Accesses

Citations

Detail

Sections
Recommended

/