Jun 2019, Volume 13 Issue 3
    

  • Select all
  • RESEARCH ARTICLE
    Y B SUDHIR SASTRY, B G KIROS, F HAILU, P R BUDARAPU

    Frequent failures due to foreign particle impacts are observed in compressor blades of the interceptor fighter MIG-23 aircraft engines in the Ethiopian air force, supplied by the Dejen Aviation Industry. In this paper, we made an attempt to identify the causes of failure and hence recommend the suitable materials to withstand the foreign particle impacts. Modal and stress analysis of one of the recently failed MIG-23 gas turbine compressor blades made up of the following Aluminum based alloys: 6061-T6, 7075-T6, and 2024-T4, has been performed, apart from the impact analysis of the rotor blades hit by a granite stone. The numerical results are correlated to the practical observations. Based on the modal, stress and impact analysis and the material properties of the three considered alloys, alloy 7075-T6 has been recommended as the blade material.

  • RESEARCH ARTICLE
    Kunamineni VIJAY, Meena MURMU

    This paper presents the effect on compressive strength and self-healing capability of bacterial concrete with the addition of calcium lactate. Compared to normal concrete, bacterial concrete possesses higher durability and engineering concrete properties. The production of calcium carbonate in bacterial concrete is limited to the calcium content in cement. Hence calcium lactate is externally added to be an additional source of calcium in the concrete. The influence of this addition on compressive strength, self-healing capability of cracks is highlighted in this study. The bacterium used in the study is bacillus subtilis and was added to both spore powder form and culture form to the concrete. Bacillus subtilis spore powder of 2 million cfu/g concentration with 0.5% cement was mixed to concrete. Calcium lactates with concentrations of 0.5%, 1.0%, 1.5%, 2.0%, and 2.5% of cement, was added to the concrete mixes to test the effect on properties of concrete. In other samples, cultured bacillus subtilis with a concentration of 1×105 cells/mL was mixed with concrete, to study the effect of bacteria in the cultured form on the properties of concrete. Cubes of 100 mm×100 mm×100 mm were used for the study. These cubes were tested after a curing period of 7, 14, and 28 d. A maximum of 12% increase in compressive strength was observed with the addition of 0.5% of calcium lactate in concrete. Scanning electron microscope and energy dispersive X-ray spectroscopy examination showed the formation of ettringite in pores; calcium silicate hydrates and calcite which made the concrete denser. A statistical technique was applied to analyze the experimental data of the compressive strengths of cementations materials. Response surface methodology was adopted for optimizing the experimental data. The regression equation was yielded by the application of response surface methodology relating response variables to input parameters. This method aids in predicting the experimental results accurately with an acceptable range of error. Findings of this investigation indicated the influence of added calcium lactate in bio-concrete which is quite impressive for improving the compressive strength and self-healing properties of concrete.

  • RESEARCH ARTICLE
    M. Houshmand KHANEGHAHI, M. ALEMBAGHERI, N. SOLTANI

    The static performance of arch dams during construction and reservoir impoundment is assessed taking into account the effects of uncertainties presented in the model properties as well as the loading conditions. Dez arch dam is chosen as the case study; it is modeled along with its rock foundation using the finite element method considering the stage construction. Since previous studies concentrated on simplified models and approaches, comprehensive study of the arch dam model along with efficient and state-of-the-art uncertainty methods are incorporated in this investigation. The reliability method is performed to assess the safety level and the sensitivity analyses for identifying critical input factors and their interaction effects on the response of the dam. Global sensitivity analysis based on improved Latin hypercube sampling is employed in this study to indicate the influence of each random variable and their interaction on variance of the responses. Four levels of model advancement are considered for the dam-foundation system: 1) Monolithic dam without any joint founded on the homogeneous rock foundation, 2) monolithic dam founded on the inhomogeneous foundation including soft rock layers, 3) jointed dam including the peripheral and contraction joints founded on the homogeneous foundation, and 4) jointed dam founded on the inhomogeneous foundation. For each model, proper performance indices are defined through limit-state functions. In this manner, the effects of input parameters in each performance level of the dam are investigated. The outcome of this study is defining the importance of input factors in each stage and model based on the variance of the dam response. Moreover, the results of sampling are computed in order to assess the safety level of the dam in miscellaneous loading and modeling conditions.

  • RESEARCH ARTICLE
    S. SAMANTA, S. S. NANTHAKUMAR, R. K. ANNABATTULA, X. ZHUANG

    The aim of current work is to improve the existing inverse methodology of void-detection based on a target impedance curve, leading to quick-prediction of the parameters of single circular void. In this work, mode-shape dependent shifting phenomenon of peaks of impedance curve with change in void location has been analyzed. A number of initial guesses followed by an iterative optimization algorithm based on univariate method has been used to solve the problem. In each iteration starting from each initial guess, the difference between the computationally obtained impedance curve and the target impedance curve has been reduced. This methodology has been extended to detect single circular metallic inclusion in 2D piezoelectric cantilever beam. A good accuracy level was observed for detection of flaw radius and flaw-location along beam-length, but not the precise location along beam-width.

  • RESEARCH ARTICLE
    M. SALAR, M. R. GHASEMI, B. DIZANGIAN

    This paper addresses practical sizing optimization of deployable and scissor-like structures from a new point of view. These structures have been recently highly regarded for beauty, lightweight, determine behavior, proper performance against lateral loads and the ability of been compactly packaged. At this time, there is a few studies done considering practical optimization of these structures. Loading considered here includes wind and gravity loads. In foldable scissor-like structures, connections have a complex behavior. For this reason, in this study, the authors used the ABAQUS commercial package as an analyzer in the optimization procedure. This made the obtained optimal solutions highly reliable from the point of view of applicability and construction requirements. Also, to do optimization task, a fast genetic algorithm method, which has been recently introduced by authors, was utilized. Optimization results show that despite less weight for aluminum models than steel models, aluminum deployable structures are not affordable because they need more material than steel structures and cause more environmental damage.

  • RESEARCH ARTICLE
    Ayaho MIYAMOTO, Risto KIVILUOMA, Akito YABE

    It is becoming an important social problem to make maintenance and rehabilitation of existing short and medium span(10-20 m) bridges because there are a huge amount of short and medium span bridges in service in the world. The kernel of such bridge management is to develop a method of safety(condition) assessment on items which include remaining life and load carrying capacity. Bridge health monitoring using information technology and sensors is capable of providing more accurate knowledge of bridge performance than traditional strategies. The aim of this paper is to introduce a state-of-the-art on not only a rational bridge health monitoring system incorporating with the information and communication technologies for lifetime management of existing short and medium span bridges but also a continuous data collecting system designed for bridge health monitoring of mainly short and medium span bridges. In this paper, although there are some useful monitoring methods for short and medium span bridges based on the qualitative or quantitative information, mainly two advanced structural health monitoring systems are described to review and analyse the potential of utilizing the long term health monitoring in safety assessment and management issues for short and medium span bridge. The first is a special designed mobile in-situ loading device(vehicle) for short and medium span road bridges to assess the structural safety(performance) and derive optimal strategies for maintenance using reliability based method. The second is a long term health monitoring method by using the public buses as part of a public transit system (called bus monitoring system) to be applied mainly to short and medium span bridges, along with safety indices, namely, “characteristic deflection” which is relatively free from the influence of dynamic disturbances due to such factors as the roughness of the road surface, and a structural anomaly parameter.

  • RESEARCH ARTICLE
    Zhitian ZHANG

    Mean wind response induced incompatibility and nonlinearity in bridge aerodynamics is discussed, where the mean wind and aeroelastic loads are applied simultaneously in time domain. A kind of incompatibility is found during the simultaneous simulation of the mean wind and aeroelastic loads, which leads to incorrect mean wind structural responses. It is found that the mathematic expectations (or limiting characteristics) of the aeroelastic models are fundamental to this kind of incompatibility. In this paper, two aeroelastic models are presented and discussed, one of indicial-function-denoted (IF-denoted) and another of rational-function-denoted (RF-denoted). It is shown that, in cases of low wind speeds, the IF-denoted model reflects correctly the mean wind load properties, and results in correct mean structural responses; in contrast, the RF-denoted model leads to incorrect mean responses due to its nonphysical mean properties. At very high wind speeds, however, even the IF-denoted model can lead to significant deviation from the correct response due to steady aerodynamic nonlinearity. To solve the incompatibility at high wind speeds, a methodology of subtraction of pseudo-steady effects from the aeroelastic model is put forward in this work. Finally, with the method presented, aeroelastic nonlinearity resulted from the mean wind response is investigated at both moderate and high wind speeds.

  • RESEARCH ARTICLE
    Hui ZHENG, Zhi FANG, Bin CHEN

    As a new generation of concrete, RPC(Reactive Powder Concrete) has attracted great research attention for its ultra-high strength and high durability. In the present paper, experimental results from tests on eight prestressed RPC I-section girders failing in shear are reported herein. The beams with RPC of 120 MPa in compression were designed to assess the ability to carry shear stress in thin webbed prestressed beams with stirrups. The test variables were the level of prestressing, shear span-depth ratio (a/d) and stirrup ratio. Shear deformation, shear capacity and crack pattern were experimentally investigated in detail. With regard to the shear resistance of the test beams, the predictions from three standards (AFGC, JSCE and SIA) on the design of UHPC structures were compared with the experimental result suggesting that the experimental strength is almost always higher than predicted. RPC, as a new concrete, was different from normal concrete and fiber reinforced concrete. Further study should be needed to develop an analytical method and computation model for shear strength of RPC beams.

  • RESEARCH ARTICLE
    Vivian W. Y. TAM, Jianzhuang XIAO, Sheng LIU, Zixuan CHEN

    The paper investigates the behaviors of recycled aggregate concrete-filled steel tubular (RACFST) columns under eccentric loadings with the incorporation of expansive agents. A total of 16 RACFST columns were tested in this study. The main parameters varied in this study are recycled coarse aggregate replacement percentages (0%, 30%, 50%, 70%, and 100%), expansive agent dosages (0%, 8%, and 15%) and an eccentric distance of compressive load from the center of the column (0 and 40 mm). Experimental results showed that the ultimate stresses of RACFST columns decreased with increasing recycled coarse aggregate replacement percentages but appropriate expansive agent dosages can reduce the decrement; the incorporation of expansive agent decreased the ultimate stresses of RACFST columns but an appropriate dosage can increase the deformation ability. The recycled coarse aggregate replacement percentages have limited influence on the ultimate stresses of the RACFST columns and has more effect than that of the normal aggregate concrete-filled steel tubular columns.

  • RESEARCH ARTICLE
    Toshifumi MUKUNOKI, Ta Thi HOAI, Daisuke FUKUSHIMA, Teppei KOMIYA, Takayuki SHIMAOKA

    A significant volume of Municipal Solid Waste incineration bottom ash and fly ash (i.e., incineration residues) are commonly disposed as landfill. Meanwhile, reclamation of landfill sites to create a new land space after their closure becomes an important goal in the current fewer and fewer land availability scenario in many narrow countries. The objective of this study is to reclaim incineration residue materials in the landfill site by using cement and coal fly ash as stabilizers aiming at performing quality check as new developed materials before future construction. Indeed, physical and mechanical properties of these new materials should be initially examined at the micro scale, which is the primary fundamental for construction at larger scale. This research examines quantitative influences of using the combination of cement and coal fly ash at different ratio on the internal structure and ability of strength enhancement of incineration residues when suffering from loading. Couple of industrial and micro-focus X-ray computed tomography (CT) scanners combined with an image analysis technique were utilized to characterize and visualize the behavior and internal structure of the incineration residues-cement-coal fly ash mixture under the series of unconfined compression test and curing period effect. Nine types of cement solidified incineration residues in term of different curing period (i.e., 7, 14, 28 days) and coal fly ash addition content (i.e., 0%, 9%, 18%) were scanned before and after unconfined compression tests. It was shown that incineration residues solidified by cement and coal fly ash showed an increase in compression strength and deformation modulus with curing time and coal fly ash content. Three-dimension computed tomography images observation and analysis confirmed that solidified incineration residues including incineration bottom and fly ash as well as cement and coal fly ash have the deliquescent materials. Then, it was studied that stabilized parts play a more important role than spatial void distribution in increment or reduction of compression strength.

  • RESEARCH ARTICLE
    Yehua SUN, Guquan SONG, Hui LV

    Recent research about reconstruction methods mainly used the interpolation reconstruction of the fluctuating wind pressure field on the surface. However, to investigate wind pressure at the edge of the building, the work presented in this paper focuses on the extrapolation reconstruction of wind pressure fields. Here, we propose an improved proper orthogonal decomposition (POD) and Kriging method with a von Kármán correlation function to resolve this issue. The studies show that it works well for not only interpolation reconstruction but also extrapolation reconstruction. The proposed method does require determination of the Hurst exponent and other parameters analysed from the original data. Hence, the fluctuating wind fields have been characterized by the von Kármán correlation function, as an a priori function. Compared with the cubic spline method and different variogram, preliminary results suggest less time consumption and high efficiency in extrapolation reconstruction at the edge.

  • RESEARCH ARTICLE
    Abeer A. AL-MUSAWI

    Accurate prediction of shear strength of structural engineering components can yield a magnificent information modeling and predesign process. This paper aims to determine the shear strength of steel fiber reinforced concrete beams using the application of data-intelligence models namely hybrid artificial neural network integrated with particle swarm optimization. For the considered data-intelligence models, the input matrix attribute is one of the central element in attaining accurate predictive model. Hence, various input attributes are constructed to model the shear strength “as a targeted variable”. The modeling is initiated using historical published researches steel fiber reinforced concrete beams information. Seven variables are used as input attribute combination including reinforcement ratio (ρ%), concrete compressive strength (f c'), fiber factor ( F1), volume percentage of fiber (Vf), fiber length to diameter ratio ( l fl d) effective depth (d), and shear span-to-strength ratio ( ad), while the shear strength ( Ss) is the output of the matrix. The best network structure obtained using the network having ten nodes and one hidden layer. The final results obtained indicated that the hybrid predictive model of ANN-PSO can be used efficiently in the prediction of the shear strength of fiber reinforced concrete beams. In more representable details, the hybrid model attained the values of root mean square error and correlation coefficient 0.567 and 0.82, respectively.

  • RESEARCH ARTICLE
    Tanvi SINGH, Mahesh PAL, V. K. ARORA

    M5 model tree, random forest regression (RF) and neural network (NN) based modelling approaches were used to predict oblique load carrying capacity of batter pile groups using 247 laboratory experiments with smooth and rough pile groups. Pile length (L), angle of oblique load (α), sand density (ρ), number of batter piles (B), and number of vertical piles (V) as input and oblique load (Q) as output was used. Results suggest improved performance by RF regression for both pile groups. M5 model tree provides simple linear relation which can be used for the prediction of oblique load for field data also. Model developed using RF regression approach with smooth pile group data was found to be in good agreement for rough piles data. NN based approach was found performing equally well with both smooth and rough piles. Sensitivity analysis using all three modelling approaches suggest angle of oblique load (α) and number of batter pile (B) affect the oblique load capacity for both smooth and rough pile groups.

  • RESEARCH ARTICLE
    M. Z. Naser, R. A. Hawileh

    This paper investigates the effect of differential support settlement on shear strength and behavior of continuous reinforced concrete (RC) deep beams. A total of twenty three-dimensional nonlinear finite element models were developed taking into account various constitutive laws for concrete material in compression (crushing) and tension (cracking), steel plasticity (i.e., yielding and strain hardening), bond-slip at the concrete and steel reinforcement interface as well as unique behavior of spring-like support elements. These models are first validated by comparing numerical predictions in terms of load-deflection response, crack propagation, reaction distribution, and failure mode against that of measured experimental data reported in literature. Once the developed models were successfully validated, a parametric study was designed and performed. This parametric study examined number of critical parameters such as ratio and spacing of the longitudinal and vertical reinforcement, compressive and tensile strength of concrete, as well as degree (stiffness) and location of support stiffness to induce varying levels of differential settlement. This study also aims at presenting a numerical approach using finite element simulation, supplemented with coherent assumptions, such that engineers, practitioners, and researchers can carry out simple, but yet effective and realistic analysis of RC structural members undergoing differential settlements due to variety of load actions.

  • RESEARCH ARTICLE
    Hamid Taghavi GANJI, Mohammad ALEMBAGHERI, Mohammad Houshmand KHANEGHAHI

    The seismic performance of gravity dam-reservoir-foundation coupled system is investigated utilizing probabilistic approach. In this research, the uncertainties associated with modeling parameters are incorporated in nonlinear response history simulations to realistically quantify their effects on the seismic performance of the system. The methodology is applied to Pine Flat gravity dam and the foundation is considered to be inhomogeneous assuming a constant spatial geometry but with various rock material properties. The sources of uncertainty are taken into account in the reliability analysis using Latin Hypercube Sampling procedure. The effects of the deconvolution process, number of samples, and foundation inhomogeneity are investigated.

  • RESEARCH ARTICLE
    Maryam ZANDIYEHVAKILI, Isa HOJAT, Mehdi MAHMUDI

    This research aims to enhance the interaction between a structure and its architectural form. Having a qualitative approach, the present work discovers some successfully used geometrical features of the Iranian ancient architecture in terms of the architectural-structural interaction. We define four qualitative criteria for this assessment, i.e., construction-ability, cost effectiveness, participation of the structure in fulfillment of the visual, and functional-semantic needs of the architectural form. For this purpose, two case studies including the Jamé Mosque of Isfahan and the Soltaniyeh building are investigated. The outcomes of this research help designers to not only design efficient structures by adapting non-load bearing elements with the general form of the structure, but also meet concepts such as the unity or perfectionism in the structure.

  • RESEARCH ARTICLE
    Jianzhuang XIAO, Wan WANG, Zhengjiu ZHOU, Mathews M. TAWANA

    A study on the punching shear behavior of 8 slabs with recycled aggregate concrete (RAC) was carried out. The two main factors considered were the recycled coarse aggregate (RCA) replacement percentage and the steel fibre volumetric ratio. The failure pattern, load-displacement curves, energy consumption, and the punching shear capacity of the slabs were intensively investigated. It was concluded that the punching shear capacity, ductility and energy consumption decreased with the increase of RCA replacement percentage. Research findings indicated that the incorporation of steel fibres could not only improve the energy dissipation capacity and the punching shear capacity of the slab, but also effectively improve the integrity of the slab tension surface and thereby changing the trend from typical punching failure pattern to bending-punching failure pattern. On the basis of the test, the punching shear capacity formula of RAC slabs with and without steel fibres was proposed and discussed.

  • RESEARCH ARTICLE
    Marcelo Frota BAZHUNI, Mahsa KAMALI, Ali GHAHREMANINEZHAD

    The properties of binary and ternary cement pastes containing glass powder (GP) were examined. Hydration at early age was evaluated using semi-adiabatic calorimetry and at late ages using non-evaporable water content and thermogravimetric analysis. The transport characteristic was assessed by measuring electrical resistivity. The binary paste with slag showed the highest hydration activity compared to the binary pastes with GP and fly ash (FA). The results indicated that the pozzolanic behavior of the binary paste with GP was less than that of the binary pastes with slag or FA at late ages. An increase in the electrical resistivity and compressive strength of the binary paste with GP compared to other modified pastes at late ages was observed. It was shown that GP tends to increase the drying shrinkage of the pastes. Ternary pastes containing GP did not exhibit synergistic enhancements compared to the respective binary pastes.