1 Introduction
2 Methodology
2.1 Simulating behaviour of cantilever sheet wall with finite element analysis
2.2 Machine learning models
2.2.1 The random forest classification
2.2.2 The Artificial Neural Network for Regression
2.3 The Proposed Hierarchic System with a Mixture of Classification and Regression models
3 Numerical results
3.1 Validation of hardening soil model and experimental data
Tab.1 Inputs of the validating cases (to compare with experimental case) and control case (for parametric study) |
No. | variable | unit | validating cases (from Ref. [60]) | control case (for parametric study in Subsection 3.4) |
---|---|---|---|---|
1 | L | m | 10 | 12 |
2 | EI | kN·m2/m | 6540.7 | 44982 |
3 | Hw | m | 0 | 2 |
4 | H | m | 3.05; 4.05; 5.05; 5.53; 5.83 | 4 |
5 | q | kN/m2 | 0 | 5 |
6 | B | m | 0 | 5 |
7 | γunsat | kN/m3 | 16 | 18.0 |
8 | γsat | kN/m3 | 19.85 | 19.0 |
9 | Eoed | kN/m2 | 10000 | 9958 |
10 | c | kN/m2 | 0 | 1 |
11 | phi | ° | 39.4 | 27 |
3.2 The database and data allocation for training and testing processes
Tab.2 Database developed by FEA for stable and Δ |
No. | L (m) | EI (kN·m2/m) | Hw (m) | H (m) | q (kN/m2) | B (m) | γunsat (kN/m3) | γsat (kN/m3) | Eoed (kN/m2) | c (kN/m2) | phi (° ) | stable | Δ (mm) | not failure? |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 8 | 44982 | 40 | 5 | 0 | 0 | 18 | 19 | 23000 | 41 | 15 | 1 | 33.61 | 1 |
2 | 9 | 44982 | 40 | 5 | 0 | 0 | 18 | 19 | 23000 | 41 | 15 | 1 | 30.12 | 1 |
3 | 10 | 44982 | 40 | 5 | 0 | 0 | 18 | 19 | 23000 | 41 | 15 | 1 | 28.69 | 1 |
4 | 12 | 44982 | 40 | 5 | 0 | 0 | 18 | 19 | 23000 | 41 | 15 | 1 | 28.14 | 1 |
5 | 16 | 44982 | 40 | 5 | 0 | 0 | 18 | 19 | 23000 | 41 | 15 | 1 | 27.97 | 1 |
6 | 8 | 44982 | 40 | 5 | 0 | 0 | 19 | 20 | 9958 | 1 | 27 | 0 | – | 0* |
7 | 9 | 44982 | 40 | 5 | 0 | 0 | 19 | 20 | 9958 | 1 | 27 | 0 | – | 0* |
8 | 10 | 44982 | 40 | 5 | 0 | 0 | 19 | 20 | 9958 | 1 | 27 | 1 | 211.68 | 0* |
9 | 12 | 44982 | 40 | 5 | 0 | 0 | 19 | 20 | 9958 | 1 | 27 | 1 | 164.33 | 1 |
10 | 16 | 44982 | 40 | 5 | 0 | 0 | 19 | 20 | 9958 | 1 | 27 | 1 | 155.18 | 1 |
198 | 10 | 44982 | 4 | 5 | 10 | 10 | 19 | 19.5 | 12000 | 32 | 22 | 1 | 40.67 | 1 |
199 | 12 | 44982 | 4 | 5 | 10 | 10 | 19 | 19.5 | 12000 | 32 | 22 | 1 | 39.1 | 1 |
200 | 16 | 44982 | 4 | 5 | 10 | 10 | 19 | 19.5 | 12000 | 32 | 22 | 1 | 39.14 | 1 |
*Note: These zero values then switched into –1 in the framework to avoid confusing with the value of regression predictions. |
Tab.3 Database developed by FEA for y(x) |
sample # | 1 | 2 | … | 199 | 200 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x (m) | y(x) (m) | x (m) | y(x) (m) | … | x (m) | y(x) (m) | x (m) | y(x) (m) | |||||
1 | 0.0000 | 0.0082 | 0.0000 | 0.0061 | … | 0.0000 | 0.0140 | 0.0000 | 0.0134 | ||||
2 | 0.2951 | 0.0113 | 0.2951 | 0.0092 | … | 0.2951 | 0.0232 | 0.2951 | 0.0234 | ||||
3 | 0.2951 | 0.0113 | 0.2951 | 0.0092 | … | 0.2951 | 0.0232 | 0.2951 | 0.0234 | ||||
4 | 0.6264 | 0.0123 | 0.6264 | 0.0104 | … | 0.6264 | 0.0251 | 0.6264 | 0.0254 | ||||
5 | 0.6264 | 0.0123 | 0.6264 | 0.0104 | … | 0.6264 | 0.0251 | 0.6264 | 0.0254 | ||||
53 | 55.2219 | 0.0009 | 55.2219 | 0.0009 | … | 55.2219 | 0.0019 | 55.2219 | 0.0020 | ||||
54 | 57.6109 | 0.0009 | 57.6109 | 0.0009 | … | 57.6109 | 0.0019 | 57.6109 | 0.0019 | ||||
55 | 60.0000 | 0.0009 | 60.0000 | 0.0009 | … | 60.0000 | 0.0019 | 60.0000 | 0.0019 |
Tab.4 Ranges of variables in the database |
No. | variable | unit | count | min | max |
---|---|---|---|---|---|
1 | L | (m) | 200 | 8 | 16 |
2 | EI | (kN·m2/m) | 200 | 44982 | 110250 |
3 | Hw | (m) | 200 | 1 | 40 |
4 | H | (m) | 200 | 2.5 | 5 |
5 | q | (kN/m2) | 200 | 0 | 15 |
6 | B | (m) | 200 | 0 | 15 |
7 | γunsat | (kN/m3) | 200 | 17 | 19 |
8 | γsat | (kN/m3) | 200 | 17.6 | 20 |
9 | Eoed | (kN/m2) | 200 | 5479 | 78000 |
10 | c | (kN/m2) | 200 | 1 | 41 |
11 | ° | 200 | 15 | 34 |
Tab.5 Detail of data splitting for 3 developed models |
No. | model | data ID | predicted variable | unit | valid count | min | max | samples for training | samples for testing | samples for graphical evaluation |
---|---|---|---|---|---|---|---|---|---|---|
1 | RFC | data1 | Statusa) | – | 200 | –1 | 1 | 160 | 40 | – |
2 | RANN1 | data2 | Δb) | mm | 135 | 8.2 | 200 | 108 | 27 | – |
3 | RANN2 | data3 | y(x)c) | mm | 135 × 31 = 4185d) | –13.1 | 854.7 | 104 × 31 = 3224 | 26 × 31 = 806 | 5e) × 31 = 155 |
Notes: a) Unstable if Δ > 200 mm or error in computation process. b) Only Δ ≤ 200 mm is used for developing the RANN1. c) Only Δ ≤ 200 mm is used for developing the RANN2. d) The 31 selected horizontal locations are: 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 25.0, 30.0, 40.0, 50.0, 60.0 (m). e) Samples: 1st, 33rd, 96th, 101st, and 140th. |
Tab.6 Input-output correlation matrix |
variable | L | EI | Hw | H | q | B | γunsat | γsat | Eoed | c | x | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
stable | 0.3674 | –0.0642 | 0.1327 | –0.0832 | 0.1362 | 0.1184 | –0.0698 | –0.1439 | 0.4293 | 0.4100 | –0.0055 | – |
Δ | 0.3235 | –0.0447 | 0.0012 | 0.1555 | –0.1327 | –0.1248 | 0.0838 | 0.1510 | –0.4126 | –0.4753 | 0.0798 | – |
y(x) | 0.0614 | –0.0077 | –0.0771 | -0.0374 | 0.2938 | 0.2575 | –0.2399 | –0.2714 | –0.3055 | –0.3830 | 0.3683 | –0.3926 |
3.3 The developed data-driven models
3.3.1 The random forest classification model
3.3.2 Regression models with artificial neural networks
Tab.7 Configuration of the RANN1 |
layer | number of nodes | trainable weights |
---|---|---|
input layer | 12 + 1 (bias) | – |
hidden layer 1 | 64 + 1 (bias) | (12+1) × 64 = 832 |
hidden layer 2 | 512 + 1 (bias) | (64+1) × 512 = 33280 |
hidden layer 3 | 32 + 1 (bias) | (512+1) × 32 = 16416 |
output layer | 1 | (32+1) × 1 = 33 |
total | 625 | 50561 |
Tab.8 Configuration of the RANN2 |
layer | number of nodes | trainable weights |
---|---|---|
input layer | 12 + 1(x) + 1 (bias) | – |
hidden layer 1 | 64 + 1 (bias) | (13+1) × 64 = 896 |
hidden layer 2 | 64 + 1 (bias) | (64+1) × 64 = 4160 |
hidden layer 3 | 64 + 1 (bias) | (64+1) × 64 = 4160 |
hidden layer 4 | 64 + 1 (bias) | (64+1) × 64 = 4160 |
hidden layer 5 | 32 + 1 (bias) | (64+1) × 32 = 2080 |
hidden layer 6 | 8 + 1 (bias) | (32+1) × 8 = 264 |
output layer | 1 | (8+1) × 1 = 9 |
total | 317 | 15729 |
Tab.9 Evaluation metrics for Regression models |
metric | equation | RANN1 | RANN2 | |||
---|---|---|---|---|---|---|
on train set | on test set | on train set | on test set | |||
mean absolute error | 0.201697 | 4.531986 | 0.000288 | 0.00103 | ||
mean squared error | 0.11290 | 49.2773 | 7.2152e−07 | 9.6209e−06 | ||
coefficient of determination | 0.9999 | 0.95212 | 0.9999 | 0.9988 |
3.4 Feature importance and parametric studies
3.5 Results of the proposed hierarchical system
Tab.10 Example of output system with proposed framework (Fig.3) |
No. | stable | Δ (FEA) (mm) | x* (m) | y(x) (FEA) (mm) | not failure? | output 1 (Δ) (mm) | output 2 (y(x)) (mm) |
---|---|---|---|---|---|---|---|
1 | 1 | 33.610 | 2.5 | 12.700 | 1 | 30.939 | 13.200 |
2 | 1 | 30.120 | 3.5 | 10.100 | 1 | 29.084 | 98.800 |
3 | 1 | 28.690 | 4 | 9.100 | 1 | 27.399 | 9.900 |
4 | 1 | 28.140 | 0.5 | 8.700 | 1 | 26.209 | 8.300 |
5 | 1 | 27.970 | 10 | 4.400 | 1 | 27.932 | 4.700 |
6 | 0 | – | – | – | 0 | –1 | –1 |
7 | 0 | – | – | – | 0 | –1 | –1 |
8 | 1 | 211.680 | 2.5 | 22.840 | 0 | –1 | –1 |
9 | 1 | 164.330 | 6.5 | 29.500 | 1 | 149.577 | 28.900 |
10 | 1 | 155.180 | 1.5 | 107.100 | 1 | 130.018 | 112.900 |
*Note: x location is chosen based on interest. A list of discontinuous x within a range can provide the profile of the settlement on the ground surface. |