Introduction
Damage location prediction
Data collection from pile hit experiments
Fig.1 Experimental setup for the pile hit tests. (a) Diagrammatic sketch of test setup (cm); (b) specimen and testing; (c) hit directions; (d) AE system; (e) AE sensor; (f) hammer; (g) diagrammatic sketch of top sensors installation (cm); (h) diagrammatic sketch of bottom sensors installation (cm); (i) installation of top sensors; (j) installation of bottom sensors. |
Deep learning data set
Tab.1 AE parameters with statistical values of the data set |
no. | AE parameter | definition | minimum | maximum | mean | median | standard deviation |
---|---|---|---|---|---|---|---|
1 | arrival time (µs) | time at which an AE wave reaches the sensor | 1.2 | 39.5 | 17.6 | 17.6 | 9.6 |
2 | channel no. | also referred to as the sensor number; different sensors are connected to the AE system by different channels | 1.0 | 10.0 | 5.0 | 6.0 | 2.8 |
3 | rise time (µs) | time between the first signal crossing the threshold and the maximum amplitude | 60.0 | 15960.0 | 1754.3 | 1570.0 | 1279.5 |
4 | counts | number of oscillations of the signal over the threshold | 11.0 | 364.0 | 125.0 | 126.0 | 38.0 |
5 | energy | area under the signal detection envelope | 421.0 | 65535.0 | 16161.0 | 14245.0 | 10849.0 |
6 | duration (µs) | time between the first and last threshold crossing | 4140.0 | 56950.0 | 20619.0 | 19880.0 | 6746.0 |
7 | amplitude (dB) | maximum voltage of the AE waveform | 65.0 | 99.0 | 91.3 | 93.0 | 6.7 |
8 | RMS (V) | root mean square (RMS) value of the detected signal | 0.4 × 10−3 | 0.7 | 0.2 | 0.1 | 0.1 |
9 | ASL (dB) | average signal level (ASL) of the detected signal | 18.0 | 79.0 | 64.6 | 66.0 | 7.2 |
10 | counts to peak | number of threshold crossings from the first to maximum voltage | 1.0 | 118.0 | 18.5 | 17.0 | 10.4 |
11 | signal strength (pV·s) | time integral of the absolute signal voltage | 2.6 × 106 | 4.6 × 108 | 1.0 × 108 | 8.9 × 107 | 6.8 × 107 |
12 | absolute energy (aJ) | time integral of the square of the unamplified signal voltage, expressed in attojoules | 2.5 × 105 | 1.7 × 109 | 2.0 × 108 | 1.2 × 108 | 2.3 × 108 |
13 | average frequency (kHz) | ratio of the counts to duration, divided by 1000 | 2.0 | 12.0 | 6.2 | 6.0 | 1.5 |
14 | reverberation frequency (MHz) | (counts-counts to peak) divided by (duration-rise time) | 1.0 | 11.0 | 5.3 | 5.0 | 1.5 |
15 | initiation frequency (MHz) | counts to peak divided by the rise time | 2.0 | 26.0 | 10.9 | 11.0 | 3.1 |
16 | frequency centroid (kHz) | centroid of the power spectrum | 5.0 | 21.0 | 10.2 | 10.0 | 2.3 |
17 | peak frequency (kHz) | greatest power point of the spectrum | 1.0 | 17.0 | 6.6 | 4.0 | 4.8 |
Back propagation neural network deep learning model
Tab.2 Specific details of the BP network |
network type | feed-forward BP |
---|---|
adaption learning function | LEARNDM |
performance function | MSE |
number of layers | 2 |
transfer function | TANSIG |
Tab.3 Comparison of different training functions for the BP network |
No. | training function | regression value |
---|---|---|
1 | TRAINBFG | 0.7077 |
2 | TRAINBR | 0.7088 |
3 | TRAINCGB | 0.7028 |
4 | TRAINCGF | 0.6977 |
5 | TRAINCGP | 0.7038 |
6 | TRAINGD | 0.6902 |
7 | TRAINGDM | 0.6932 |
8 | TRAINGDA | 0.6787 |
9 | TRAINGDX | 0.6849 |
10 | TRAINGLM | 0.7579 |
11 | TRAINOSS | 0.4741 |
12 | TRAINR | 0.6845 |
13 | TRAINRP | 0.7066 |
14 | TRAINSSG | 0.7114 |
Tab.4 Comparison of varying numbers of hidden layers and neurons |
hidden layers | 10 | 20 | 30 |
---|---|---|---|
1 | 0.7579 | 0.7825 | 0.7835 |
2 | 0.7737 | 0.8076 | 0.8051 |
Fig.2 BP neural network modeling. (a) Total number of data points obtained in the AE test; (b) topology of the BP neural network; (c) learning process of the BP neural network; (d) schematic concept of the three-layer BP neural network model; (e) schematic concept of the four-layer BP neural network model. |
Verification of the damage location
Result validation
Tab.5 Validation results for PL and DS |
data group | PLa) (pile no.) | DSb) (cm) | ||
---|---|---|---|---|
actual | predicted | actual | predicted | |
1 | 1.00 | 3.02 | 20.00 | 5.38 |
2 | 1.00 | 2.04 | 80.00 | 80.55 |
3 | 2.00 | 2.85 | 40.00 | 33.80 |
4 | 2.00 | 4.19 | 100.00 | 95.89 |
5 | 3.00 | 3.17 | 0.00 | 0.33 |
6 | 3.00 | 3.68 | 60.00 | 57.34 |
7 | 4.00 | 4.31 | 20.00 | 21.44 |
8 | 4.00 | 3.98 | 40.00 | 29.01 |
9 | 5.00 | 2.71 | 80.00 | 87.48 |
10 | 5.00 | 1.05 | 100.00 | 99.98 |
11 | 6.00 | 5.25 | 0.00 | 1.10 |
12 | 6.00 | 3.83 | 60.00 | 50.18 |
Notes: a) PL: pile location; b) DS: damage distance from the pile cap. |
Influences of individual parameters on the regression values
Tab.6 Comparison of the test groups to evaluate parameter sensitivity |
test case | input parameters | data set size | PL | DS | ||||
---|---|---|---|---|---|---|---|---|
regression value | MSEa) | RMSEb) | regression value | MSE | RMSE | |||
1 | all | 17 × 7188 | 0.5801 | 1.91 | 1.38 | 0.9814 | 43.87 | 6.62 |
2 | remove (rise time) | 16 × 7188 | 0.5950 | 1.93 | 1.39 | 0.9801 | 42.55 | 6.52 |
3 | remove (counts) | 16 × 7188 | 0.5628 | 1.97 | 1.40 | 0.9817 | 44.18 | 6.69 |
4 | remove (energy) | 16 × 7188 | 0.5272 | 2.01 | 1.42 | 0.9811 | 44.06 | 6.64 |
5 | remove (duration) | 16 × 7188 | 0.5857 | 1.92 | 1.39 | 0.9810 | 41.38 | 6.43 |
6 | remove (amplitude) | 16 × 7188 | 0.5554 | 1.98 | 1.41 | 0.9824 | 42.02 | 6.48 |
7 | remove (RMS) | 16 × 7188 | 0.5868 | 1.92 | 1.38 | 0.9809 | 44.14 | 6.64 |
8 | remove (ASL) | 16 × 7188 | 0.5750 | 1.96 | 1.40 | 0.9828 | 44.27 | 6.53 |
9 | remove (counts to peak) | 16 × 7188 | 0.5777 | 1.95 | 1.39 | 0.9821 | 41.38 | 6.43 |
10 | remove (signal strength) | 16 × 7188 | 0.6132 | 1.86 | 1.36 | 0.9800 | 44.53 | 6.67 |
11 | remove (absolute energy) | 16 × 7188 | 0.5858 | 1.92 | 1.39 | 0.9820 | 43.03 | 6.5594 |
12 | remove frequencies | 12 × 7188 | 0.5251 | 2.16 | 1.47 | 0.9804 | 44.78 | 6.69 |
13 | remove (arrival time) | 16 × 7188 | 0.5555 | 2.05 | 1.43 | 0.6931 | 641.46 | 25.32 |
14 | remove (channel no.) | 16 × 7188 | 0.5396 | 2.09 | 1.45 | 0.9808 | 43.52 | 6.60 |
Notes: a) MSE: mean square error; b) RMSE: root mean square error. |
Tab.7 Regression values with single parameters |
test case | input parameters | data set size | output regression | |
---|---|---|---|---|
PL | DS | |||
1 | all | 17 × 7188 | 0.5801 | 0.9814 |
2 | rise time | 1 × 7188 | 0.0965 | 0.0868 |
3 | counts | 1 × 7188 | 0.0739 | 0.1140 |
4 | energy | 1 × 7188 | 0.1062 | 0.1257 |
5 | duration | 1 × 7188 | 0.1695 | 0.1448 |
6 | amplitude | 1 × 7188 | 0.0782 | 0.1179 |
7 | RMS | 1 × 7188 | 0.1158 | 0.0946 |
8 | ASL | 1 × 7188 | 0.1168 | 0.0984 |
9 | counts to peak | 1 × 7188 | 0.0692 | 0.0913 |
10 | signal strength | 1 × 7188 | 0.1114 | 0.1257 |
11 | absolute energy | 1 × 7188 | 0.1131 | 0.0940 |
12 | frequency (Aa)-Rb)-Ic)-Cd)-Pe)) | 5 × 7188 | 0.3500 | 0.3291 |
13 | arrival time | 1 × 7188 | 0.1454 | 0.9760 |
14 | channel no. | 1 × 7188 | 0.0016 | 0.0012 |
Notes: a) A: average frequency; b) R: reverberation frequency; c) I: initiation frequency: d) C: frequency centroid; e) P: peak frequency. |
Influences of the installation location and number of sensors
Tab.8 Comparison of the results for test groups comprising individual channels |
data set | sensor number | data size | PL | DS | ||||
---|---|---|---|---|---|---|---|---|
regression value | MSE | RMSE | regression value | MSE | RMSE | |||
all channels | 17 × 7188 | 0.5801 | 1.91 | 1.38 | 0.9814 | 43.87 | 6.62 | |
S1 | sensor 1 | 16 × 720 | 0.6762 | 1.65 | 1.28 | 0.9862 | 39.91 | 9.32 |
S2 | sensor 2 | 16 × 720 | 0.6501 | 1.69 | 1.30 | 0.9832 | 37.49 | 6.12 |
S3 | sensor 3 | 16 × 720 | 0.6209 | 1.79 | 1.34 | 0.9815 | 44.41 | 6.66 |
S4 | sensor 4 | 16 × 720 | 0.6635 | 1.64 | 1.28 | 0.9840 | 38.57 | 6.21 |
S5 | sensor 5 | 16 × 720 | 0.6917 | 1.54 | 1.24 | 0.9858 | 33.01 | 5.75 |
S6 | sensor 6 | 16 × 720 | 0.6695 | 1.62 | 1.27 | 0.9853 | 34.69 | 5.89 |
S7 | sensor 7 | 16 × 720 | 0.7926 | 1.08 | 1.04 | 0.9849 | 35.45 | 5.95 |
S8 | sensor 8 | 16 × 720 | 0.7854 | 1.12 | 1.06 | 0.9847 | 36.24 | 6.02 |
S9 | sensor 9 | 16 × 720 | 0.7957 | 1.09 | 1.05 | 0.9848 | 38.23 | 6.18 |
S10 | sensor 10 | 16 × 7 20 | 0.7976 | 1.06 | 1.03 | 0.9833 | 39.19 | 6.26 |
Comparison of ‘time difference’ and ‘arrival time’
Damage step prediction
Data collection from failure experiments
Tab.9 Physical properties of the concrete specimens |
group | sample | UCS (MPa) | P-wave velocity (m/s) | density (g/cm3) | mixing ratio (water:cement:sand) |
---|---|---|---|---|---|
A | a-1 | 25.0 | 2861 | 1.59 | W:C:S= 1:2:0 |
a-2 | 26.8 | 2951 | 1.57 | ||
a-3 | 20.9 | 2171 | 1.67 | ||
a-4 | 28.8 | 4353 | 1.67 | ||
a-5 | 12.4 | 3800 | 1.71 | ||
B | b-1 | 26.4 | 4519 | 2.02 | W:C:S= 1:2:2 |
b-2 | 19.3 | 4977 | 1.98 | ||
b-3 | 26.7 | 4895 | 1.96 | ||
b-4 | 28.7 | 5057 | 1.99 | ||
b-5 | 39.5 | 4949 | 2.02 | ||
C | c-1 | 23.2 | 4910 | 2.03 | W:C:S= 1:2:4 |
c-2 | 21.9 | 4493 | 2.07 | ||
c-3 | 6.0 | 3968 | 1.95 | ||
c-4 | 15.3 | 5057 | 1.97 | ||
c-5 | 18.4 | 4811 | 1.99 |
Data set for the classification learner
Tab.10 Damage step identification |
stress ratio | damage step | phenomenon |
---|---|---|
0%–35% | I | no crack generation |
35%–97% | II | crack generation and expansion |
97%–100% | III | structure failure |
Fig.8 Normalized weights of 17 AE parameters (1. UCS (MPa); 2. P-wave velocity (m/s); 3. rise time; 4. counts; 5. energy; 6. duration; 7. amplitude; 8. average frequency; 9. RMS; 10. ASL; 11. counts to peak; 12. reverberation frequency; 13. initiation frequency; 14. signal strength; 15. absolute energy; 16. frequency centroid; 17. peak frequency). |
Prediction model
Tab.11 Comparison of different classifiers |
classifier | tree | accuracy | ROC area |
---|---|---|---|
decision tree | fine tree | 73.4% | 0.86 |
SVM | quadratic SVM | 72.7% | 0.85 |
naive Bayes classifier | Gaussian naive Bayes | 59.2% | 0.74 |
nearest neighbor classifier | fine KNNa) | 63.4% | 0.72 |
ensemble classifier | bagged tree | 78.2% | 0.90 |
discriminant analysis | quadratic discriminant | 64.2% | 0.79 |
Notes: a) KNN: k-nearest neighbors. |