Frontiers of Structural and Civil Engineering >
Application of coupled XFEM-BCQO in the structural optimization of a circular tunnel lining subjected to a ground motion
Received date: 11 Oct 2018
Accepted date: 13 Dec 2018
Published date: 15 Dec 2019
Copyright
A new structural optimization method of coupled extended finite element method and bound constrained quadratic optimization method (XFEM-BCQO) is adopted to quantify the optimum values of four design parameters for a circular tunnel lining when it is subjected to earthquakes. The parameters are: tunnel lining thickness, tunnel diameter, tunnel lining concrete modulus of elasticity and tunnel lining concrete density. Monte-Carlo sampling method is dedicated to construct the meta models so that to be used for the BCQO method using matlab codes. Numerical simulations of the tensile damage in the tunnel lining due to a real earthquake in the literature are created for three design cases. XFEM approach is used to show the cracks for the mentioned design cases. The results of the BCQO method for the maximum design case for the tunnel tensile damage was matching the results obtained from XFEM approach to a fair extent. The new coupled approach manifested a significant capability to predict the cracks and spalling of the tunnel lining concrete under the effects of dynamic earthquakes.
Nazim Abdul NARIMAN , Ayad Mohammad RAMADAN , Ilham Ibrahim MOHAMMAD . Application of coupled XFEM-BCQO in the structural optimization of a circular tunnel lining subjected to a ground motion[J]. Frontiers of Structural and Civil Engineering, 2019 , 13(6) : 1495 -1509 . DOI: 10.1007/s11709-019-0574-y
1 |
Pescara M, Gaspari G M, Repetto L. Design of underground structures under seismic conditions: A long deep tunnel and a metro tunnel. In: Colloquium on Seismic Design of Tunnels. Torino: Geodata Engineering SpA, 2011
|
2 |
Hashash Y M A, Hook J J, Schmidt B, I-Chiang Yao J. Seismic design and analysis of underground structure. Journal of Tunneling and Underground Space Technology, 2001, 16(4): 247–293
|
3 |
Hashash Y M A, Park D, Yao J I. Ovaling deformations of circular tunnels under seismic loading: An update on seismic design and analysis of underground structures. Journal of Tunneling and Underground Space Technology, 2005, 20(5): 435–441
|
4 |
St John C M, Zahrah T F. Aseismic design of underground structures. Tunnelling and Underground Space Technology, 1987, 2(2): 165–197
|
5 |
Kawashima K. Seismic design of underground structures in soft ground: A review. In: Kusakabe, Fujita, Miyazaki, eds. Geotechnical Aspects of Underground Construction in Soft Ground. Rotterdam, 1999
|
6 |
Fabozzi S. Behaviour of segmental tunnel lining under static and dynamic loads. Dissertation for the Doctoral Degree. Naples: University of Naples Federico II, 2017
|
7 |
Nariman N A, Hussain R R, Msekh M A, Karampour P. Prediction meta-models for the responses of a circular tunnel during earthquakes. Underground Space, 2019, 4(1): 31–47
|
8 |
Moller S C, Vermeer P A. On numerical simulation of tunnel installation. Tunnelling and Underground Space Technology (Oxford, England), 2008, 23(4): 461–475
|
9 |
Lekhnitskii S G. Anisotropic plates. London: Foreign Technology Div Wright-Patterson Afb Oh, 1968
|
10 |
Lu A Z, Zhang L Q, Zhang N. Analytic stress solutions for a circular pressure tunnel at pressure and great depth including support delay. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3): 514–519
|
11 |
Yasuda N, Tsukada K, Asakura T. Elastic solutions for circular tunnel with void behind lining. Tunnelling and Underground Space Technology (Oxford, England), 2017, 70: 274–285
|
12 |
Han X, Xia Y. Analytic solutions of the forces and displacements for multicentre circular arc tunnels. Hindawi Mathematical Problems in Engineering, 2018, 2018: 8409129
|
13 |
Schmid H. Static problems of tunnels and pressure tunnels construction and their mutual relationships. Berlin: Springer, 1926
|
14 |
Morgan H. A contribution to the analysis of stress in a circular tunnel. Geotechnique, 1961, 11(1): 37–46
|
15 |
Windels R. Kreisring im elastischen continuum. Bauingenieur, 1967, 42: 429–439
|
16 |
Duddeck H, Erdmann J. On structural design models for tunnels in soft soil. Underground Space (United States), 1985, 9(5–6): 246–259
|
17 |
Do N A, Dias D, Oreste P, Djeran-Maigre I. A new numerical approach to the hyperstatic reaction method for segmental tunnel linings. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(15): 1617–1632
|
18 |
Vu Minh N, Broere W, Bosch J W. Structural analysis for shallow tunnels in soft soils. International Journal of Geomechanics, 2017, 17(8): 04017038
|
19 |
Ghasemi H, Park H S, Rabczuk T. A level-set based IGA formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258
|
20 |
Ghasemi H, Brighenti R, Zhuang X, Muthu J, Rabczuk T. Optimum fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach. Structural and Multidisciplinary Optimization, 2015, 51(1): 99–112
|
21 |
Zhang C, Nanthakumar S S, Lahmer T, Rabczuk T. Multiple cracks identification for piezoelectric structures. International Journal of Fracture, 2017, 206(2): 151–169
|
22 |
Nanthakumar S, Zhuang X, Park H, Rabczuk T. Topology optimization of flexoelectric structures. Journal of the Mechanics and Physics of Solids, 2017, 105: 217–234
|
23 |
Nanthakumar S, Lahmer T, Zhuang X, Park H S, Rabczuk T. Topology optimization of piezoelectric nanostructures. Journal of the Mechanics and Physics of Solids, 2016, 94: 316–335
|
24 |
Nanthakumar S, Lahmer T, Zhuang X, Zi G, Rabczuk T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 24(1): 153–176
|
25 |
Nanthakumar S, Valizadeh N, Park H, Rabczuk T. Surface effects on shape and topology optimization of nanostructures. Computational Mechanics, 2015, 56(1): 97–112
|
26 |
Nanthakumar S S, Lahmer T, Rabczuk T. Detection of flaws in piezoelectric structures using extended FEM. International Journal for Numerical Methods in Engineering, 2013, 96(6): 373–389
|
27 |
Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
|
28 |
Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535
|
29 |
Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464
|
30 |
Rabczuk T, Akkermann J, Eibl J. A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5–6): 1327–1354
|
31 |
Bažant Z P. Why continuum damage is nonlocal: Micromechanics arguments. Journal of Engineering Mechanics, 1991, 117(5): 1070–1087
|
32 |
Thai T Q, Rabczuk T, Bazilevs Y, Meschke G. A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 584–604
|
33 |
Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics and Physics of Solids, 1993, 41(12): 1825–1857
|
34 |
Rabczuk T, Eibl J. Simulation of high velocity concrete fragmentation using SPH/MLSPH. International Journal for Numerical Methods in Engineering, 2003, 56(10): 1421–1444
|
35 |
Rabczuk T, Eibl J, Stempniewski L. Numerical analysis of high speed concrete fragmentation using a meshfree Lagrangian method. Engineering Fracture Mechanics, 2004, 71(4–6): 547–556
|
36 |
Rabczuk T, Xiao S P, Sauer M. Coupling of meshfree methods with nite elements: Basic concepts and test results. Communications in Numerical Methods in Engineering, 2006, 22(10): 1031–1065
|
37 |
Rabczuk T, Eibl J. Modelling dynamic failure of concrete with meshfree methods. International Journal of Impact Engineering, 2006, 32(11): 1878–1897
|
38 |
Etse G, Willam K. Failure analysis of elastoviscoplastic material models. Journal of Engineering Mechanics, 1999, 125(1): 60–69
|
39 |
Miehe C, Hofacker M, Welschinger F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45–48): 2765–2778
|
40 |
Amiri F, Millan D, Arroyo M, Silani M, Rabczuk T. Fourth order phase-field model for local max-ent approximants applied to crack propagation. Computer Methods in Applied Mechanics and Engineering, 2016, 312(C): 254–275
|
41 |
Areias P, Rabczuk T, Msekh M. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312(C): 322–350
|
42 |
Msekh M A, Silani M, Jamshidian M, Areias P, Zhuang X, Zi G, He P, Rabczuk T. Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase-eld model. Composites. Part B, Engineering, 2016, 93: 97–114
|
43 |
Hamdia K, Msekh M A, Silani M, Vu-Bac N, Zhuang X, Nguyen-Thoi T, Rabczuk T. Uncertainty quantication of the fracture properties of polymeric nanocomposites based on phase field modeling. Composite Structures, 2015, 133: 1177–1190
|
44 |
Msekh M A, Sargado M, Jamshidian M, Areias P, Rabczuk T. ABAQUS implementation of phase-field model for brittle fracture. Computational Materials Science, 2015, 96: 472–484
|
45 |
Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109
|
46 |
Hamdia K M, Zhuang X, He P, Rabczuk T. Fracture toughness of polymeric particle nanocomposites: Evaluation of Models performance using Bayesian method. Composites Science and Technology, 2016, 126: 122–129
|
47 |
Rabczuk T, Belytschko T, Xiao S P. Stable particle methods based on Lagrangian kernels. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12–14): 1035–1063
|
48 |
Rabczuk T, Belytschko T. Adaptivity for structured meshfree particle methods in 2D and 3D. International Journal for Numerical Methods in Engineering, 2005, 63(11): 1559–1582
|
49 |
Nguyen V P, Rabczuk T, Bordas S, Duflot M. Meshless methods: A review and computer implementation aspects. Mathematics and Computers in Simulation, 2008, 79(3): 763–813
|
50 |
Zhuang X, Cai Y, Augarde C. A meshless sub-region radial point interpolation method for accurate calculation of crack tip elds. Theoretical and Applied Fracture Mechanics, 2014, 69: 118–125
|
51 |
Zhuang X, Zhu H, Augarde C. An improved meshless Shepard and least squares method possessing the delta property and requiring no singular weight function. Computational Mechanics, 2014, 53(2): 343–357
|
52 |
Zhuang X, Augarde C, Mathisen K. Fracture modelling using meshless methods and level sets in 3D: Framework and modelling. International Journal for Numerical Methods in Engineering, 2012, 92(11): 969–998
|
53 |
Chen L, Rabczuk T, Bordas S, Liu G R, Zeng K Y, Kerfriden P.Extended finite element method with edge-based strain smoothing (Esm-XFEM) for linear elastic crack growth. Computer Methods in Applied Mechanics and Engineering, 2012, 209–212(4): 250–265
|
54 |
Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620
|
55 |
Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150
|
56 |
Vu-Bac N, Nguyen-Xuan H, Chen L, Lee C K, Zi G, Zhuang X, Liu G R, Rabczuk T. A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics. Journal of Applied Mathematics, 2013, 2013: 978026
|
57 |
Bordas S P A, Natarajan S, Kerfriden P, Augarde C E, Mahapatra D R, Rabczuk T, Pont S D. On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM). International Journal for Numerical Methods in Engineering, 2011, 86(4–5): 637–666
|
58 |
Bordas S P A, Rabczuk T, Hung N X, Nguyen V P, Natarajan S, Bog T, Quan D M, Hiep N V. Strain smoothing in FEM and XFEM. Computers & Structures, 2010, 88(23–24): 1419–1443
|
59 |
Rabczuk T, Zi G, Gerstenberger A, Wall W A. A new crack tip element for the phantom node method with arbitrary cohesive cracks. International Journal for Numerical Methods in Engineering, 2008, 75(5): 577–599
|
60 |
Chau-Dinh T, Zi G, Lee P S, Rabczuk T, Song J H. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92–93: 242–256
|
61 |
Song J H, Areias P M A, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 2006, 67(6): 868–893
|
62 |
Areias P M A, Song J H, Belytschko T. Analysis of fracture in thin shells by overlapping paired elements. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41–43): 5343–5360
|
63 |
Zamani R, Motahari M R. The effect of soil stiffness variations on Tunnel Lining Internal Forces under seismic loading and Case comparison with existing analytical methods. Ciência e Natura, Santa Maria, 2015, 37(1): 476–487
|
64 |
Möller S C. Tunnel induced settlements and structural forces in linings. Dissertation for the Doctoral Degree. Stuttgart: University of Stuttgart, 2006
|
65 |
Lu Q, Chen S, Chan Y, He C. Comparison between numerical and analytical analysis of the dynamic behavior of circular tunnels. Earth Sciences Research Journal, 2018, 22(2): 119–128
|
66 |
Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D. Global Sensitivity Analysis: The Primer. Hoboken: John Wiley & Sons Ltd., 2008
|
67 |
Burhenne S, Jacob D, Henze G P. Sampling based on Sobol sequences for monte carlo techniques applied to building simulations. In: The 12th Conference of International Building Performance Simulation Association. Sydney, 2011
|
68 |
Myers R H, Montgomery D C. Response Surface Methodology: Product and Process Op-timization Using Designed Experiments. 2nd ed. New York: John Wiley & Sons, 2002
|
69 |
Zhao J, Tiede C. Using a variance-based sensitivity analysis for analyzing the relation between measurements and unknown parameters of a physical model. Nonlinear Processes in Geophysics, 2011, 18(3): 269–276
|
70 |
Khuri1 A I, Mukhopadhyay S. Response surface methodology. WIREs Computational Statistics, 2010, 2(2): 128–149
|
71 |
Luenberger D G, Ye Y. Linear and Non-linear programming. In: International Series in Operations Research & Management Science. Palo Alto, CA: Stanford University, 2015
|
72 |
Box M J. A new method of constrained optimization and a comparison with other methods. Computer Journal, 1965, 8(1): 42–52
|
73 |
Hunt B R, Lipsman R L, Rosenberg J M. A Guide to MATLAB for Beginner and Experienced Users. Cambridge: Cambridge University Press, 2006
|
/
〈 | 〉 |