Frontiers of Structural and Civil Engineering >
Electronic and mechanical responses of two-dimensional HfS2, HfSe2, ZrS2, and ZrSe2 from first-principles
Received date: 11 Dec 2017
Accepted date: 08 Jan 2018
Published date: 12 Mar 2019
Copyright
During the last decade, numerous high-quality two-dimensional (2D) materials with semiconducting electronic character have been synthesized. Recent experimental study (Sci. Adv. 2017;3: e1700481) nevertheless confirmed that 2D ZrSe2 and HfSe2 are among the best candidates to replace the silicon in nanoelectronics owing to their moderate band-gap. We accordingly conducted first-principles calculations to explore the mechanical and electronic responses of not only ZrSe2 and HfSe2, but also ZrS2 and HfS2 in their single-layer and free-standing form. We particularly studied the possibility of engineering of the electronic properties of these attractive 2D materials using the biaxial or uniaxial tensile loadings. The comprehensive insight provided concerning the intrinsic properties of HfS2, HfSe2, ZrS2, and ZrSe2 can be useful for their future applications in nanodevices.
Key words: 2D materials; mechanical; electronic; DFT
Mohammad SALAVATI . Electronic and mechanical responses of two-dimensional HfS2, HfSe2, ZrS2, and ZrSe2 from first-principles[J]. Frontiers of Structural and Civil Engineering, 2019 , 13(2) : 486 -494 . DOI: 10.1007/s11709-018-0491-5
1 |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
|
2 |
Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
|
3 |
Guinea F, Katsnelson M I, Geim K. Energy gaps and zero-field quantum Hall effect in graphene by strain engineering. Nature Physics, 2010, 6(1): 30–33
|
4 |
Lherbier A, Botello-Méndez A R, Jean-Christophe C. Electronic and optical properties of pristine and oxidized borophene. 2D Materials, 2016, 3: 45006
|
5 |
Lherbier A, Blase X, Niquet Y M, Triozon F, Roche S. Charge transport in chemically doped 2D graphene. Physical Review Letters, 2008, 101(3): 036808
|
6 |
Martins T B, Miwa R H, Da Silva A J R, Fazzio A. Electronic and transport properties of boron-doped graphene nanoribbons. Physical Review Letters, 2007, 98(19): 196803
|
7 |
Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459): 419–425
|
8 |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11): 699–712
|
9 |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150
|
10 |
Mleczko M J, Zhang C, Lee H R, Kuo H H, Magyari-Köpe B, Moore R G, Shen Z X, Fisher I R, Nishi Y, Pop E. HfSe2 and ZrSe2: two-dimensional semiconductors with native high-k oxides. Science Advances, 2017, 3(8): e1700481
|
11 |
Mortazavi B, Pereira L F C, Jiang J W, Rabczuk T. Modelling heat conduction in polycrystalline hexagonal boron-nitride films. Scientific Reports, 2015, 5(1): 13228
|
12 |
Mortazavi B, Cuniberti G, Rabczuk T. Mechanical properties and thermal conductivity of graphitic carbon nitride: a molecular dynamics study. Computational Materials Science, 2015, 99: 285–289
|
13 |
Mortazavi B, Hassouna F, Laachachi A, Rajabpour A, Ahzi S, Chapron D, Toniazzo V, Ruch D. Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites. Thermochimica Acta, 2013, 552: 106–113
|
14 |
Mortazavi B, Rahaman O, Rabczuk T, Pereira L F C. Thermal conductivity and mechanical properties of nitrogenated holey graphene. Carbon, 2016, 106: 1–8
|
15 |
Mortazavi B. Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon, 2017, 118: 25–34
|
16 |
Shahrokhi M. Tuning the band gap and optical spectra of monolayer penta-graphene under in-plane biaxial strains. Optik (Stuttgart), 2017, 136: 205–214
|
17 |
Mortazavi B, Shahrokhi M, Rabczuk T, Pereira L F C. Electronic, optical and thermal properties of highly stretchable 2D carbon Ene-yne graphyne. Carbon, 2017, 123: 344–353
|
18 |
Mortazavi B, Shahrokhi M, Makaremi M, Rabczuk T. Theoretical realization of Mo2P; a novel stable 2D material with superionic conductivity and attractive optical properties. Applied Materials Today, 2017, 9: 292–299
|
19 |
Mortazavi B, Rahaman O, Dianat A, Rabczuk T. Mechanical responses of borophene sheets: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18(39): 27405–27413
|
20 |
Mortazavi B, Rabczuk T. Multiscale modeling of heat conduction in graphene laminates. Carbon, 2015, 85: 1–7
|
21 |
Shahrokhi M, Leonard C. Quasi-particle energies and optical excitations of wurtzite BeO and its nanosheet. Journal of Alloys and Compounds, 2016, 682: 254–262
|
22 |
Shahrokhi M, Leonard C. Tuning the band gap and optical spectra of silicon-doped graphene: many-body effects and excitonic states. Journal of Alloys and Compounds, 2017, 693: 1185–1196
|
23 |
Salavati M, Ghasemi H, Rabczuk T. Electromechanical properties of Boron Nitride Nanotube: atomistic bond potential and equivalent mechanical energy approach. Journal of Computational Materials Science 2018, 149: 460–465
|
24 |
Shahrokhi M, Naderi S, Fathalian A. Ab initio calculations of optical properties of B2C graphene sheet. Solid State Communications, 2012, 152(12): 1012–1017
|
25 |
Shahrokhi M. Quasi-particle energies and optical excitations of novel porous graphene phases from first-principles many-body calculations. Diamond and Related Materials, 2017, 77: 35–40
|
26 |
Behzad S, Chegel R, Moradian R, Shahrokhi M. Theoretical exploration of structural, electro-optical and magnetic properties of gallium-doped silicon carbide nanotubes. Superlattices and Microstructures, 2014, 73: 185–192
|
27 |
Shahrokhi M, Moradian R. Structural, electronic and optical properties of Zn1−xZrxO nanotubes: first principles study. Indian Journal of Physics, 2015, 89(3): 249–256
|
28 |
Mortazavi B, Rabczuk T. Boron monochalcogenides; stable and strong two-dimensional wide bang-gap semiconductors. Energies, 2018, 11(6): 1573
|
29 |
Mortazavi B, Dianat A, Rahaman O, Cuniberti G, Rabczuk T. Borophene as an anode material for Ca, Mg, Na or Li ion storage: a first-principle study. Journal of Power Sources, 2016, 329: 456–461
|
30 |
Mortazavi B, Berdiyorov G R, Shahrokhi M, Rabczuk T. Mechanical, optoelectronic and transport properties of single-layer Ca2N and Sr2N electrides. Journal of Alloys and Compounds, 2018, 739: 643–652
|
31 |
Talebi H, Silani M, Rabczuk T. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92
|
32 |
Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071
|
33 |
Budarapu P R, Gracie R, Bordas S P A, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148
|
34 |
Budarapu P R, Gracie R, Yang S W, Zhuang X, Rabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143
|
35 |
Silani M, Talebi H, Hamouda A M, Rabczuk T. Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. Journal of Computational Science, 2016, 15: 18–23
|
36 |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B: Condensed Matter and Materials Physics, 1999, 59(3): 1758–1775
|
37 |
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50
|
38 |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter and Materials Physics, 1996, 54(16): 11169–11186
|
39 |
Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
|
40 |
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of Molecular Graphics, 1996, 14(1): 33–38
|
41 |
Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 2011, 44(6): 1272–1276
|
42 |
Monkhorst H, Pack J. Special points for Brillouin zone integrations. Physical Review B: Condensed Matter and Materials Physics, 1976, 13(12): 5188–5192
|
43 |
Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. Journal of Chemical Physics, 2006, 125(22): 224106
|
44 |
Shishkin M, Kresse G. Self-consistent GW calculations for semiconductors and insulators. Phys Rev B, 2007, 75(23): 235102
|
45 |
Shishkin M, Marsman M, Kresse G. Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections. Physical Review Letters, 2007, 99(24): 246403
|
46 |
Li J, Medhekar N V, Shenoy V B. Bonding charge density and ultimate strength of monolayer transition metal dichalcogenides. Journal of Physical Chemistry C, 2013, 117(30): 15842–15848
|
47 |
Mortazavi B, Rahaman O, Makaremi M, Dianat A, Cuniberti G, Rabczuk T. First-principles investigation of mechanical properties of silicene, germanene and stanene. Physica E: Low-Dimensional System and Nanostructures, 2017, 87: 228–232
|
48 |
Silvi B, Savin A. Classification of chemical-bonds based on topological analysis of electron localization functions. Nature, 1994, 371(6499): 683–686
|
49 |
Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006, 36(3): 354–360
|
50 |
Guo H, Lu N, Wang L, Wu X, Zeng X C. Tuning electronic and magnetic properties of early transition-metal dichalcogenides via tensile strain. Journal of Physical Chemistry C, 2014, 118(13): 7242–7249
|
/
〈 | 〉 |