RESEARCH ARTICLE

The effect of SiO2 nanoparticles derived from hydrothermal solutions on the performance of portland cement based materials

  • Ismael FLORES-VIVIAN 1,2 ,
  • Rani G.K PRADOTO 1 ,
  • Mohamadreza MOINI 1 ,
  • Marina KOZHUKHOVA 1,3 ,
  • Vadim POTAPOV 4 ,
  • Konstantin SOBOLEV , 1,3
Expand
  • 1. Department of Civil Engineering and Mechanics, Advanced and Nano Cement-Based Materials Laboratory, University of Wisconsin-Milwaukee, Milwaukee 53211, USA
  • 2. Universidad Autónoma de Nuevo León, Av. Universidad s/n, Cd. Universitaria, San Nicolás de los Garza, 66455 Nuevo León, México
  • 3. The Belgorod State Technological University named after V.G. Shoukhov, Belgorod, Russia
  • 4. Geotechnological Research Center, Far East Branch of Russian Academy of Science, Petropavlovsk-Kamchatsky 683002, Russia

Received date: 01 Mar 2016

Accepted date: 18 Jul 2016

Published date: 10 Nov 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The nanoparticles of SiO2 were used in cement systems to modify the rheological behavior, to enhance the reactivity of supplementary cementitious materials, and also to improve the strength and durability. In this research, low-cost nano-SiO2 particles from natural hydrothermal solutions obtained by membrane ultrafiltration and, optionally, by cryochemical vacuum sublimation drying, were evaluated in portland cement based systems. ƒThe SiO2-rich solutions were obtained from the wells of Mutnovsky geothermal power station (Far East of Russia). The constant nano-SiO2 dosage of 0.25% (as a solid material by weight of cementitious materials) was used to compare the cement systems with different nanoparticles against a reference mortar and a commercially available nano-SiO2. Nanoparticles were characterized by X-Ray Diffraction (XRD), BET Surface Area, Scanning Electron Microscope (SEM) and Fourier Transform Infrared (FTIR) spectroscopy techniques. It was demonstrated that the addition of polycarboxylate ether superplasticizer and the dispersion treatment using an ultrasound processor can be used to facilitate the distribution of nano-SiO2 particles in the mixing water. The effect of nano-SiO2 particles in portland cement mortars was investigated by evaluating the flow, heat of hydration and compressive strength development. It was demonstrated that the use of nano-SiO2 particles can reduce the segregation and improve strength properties.

Cite this article

Ismael FLORES-VIVIAN , Rani G.K PRADOTO , Mohamadreza MOINI , Marina KOZHUKHOVA , Vadim POTAPOV , Konstantin SOBOLEV . The effect of SiO2 nanoparticles derived from hydrothermal solutions on the performance of portland cement based materials[J]. Frontiers of Structural and Civil Engineering, 2017 , 11(4) : 436 -445 . DOI: 10.1007/s11709-017-0438-2

Acknowledgments

The authors acknowledge the donation of materials by the Lafarge Cement Company, EKA Chemicals, AKZO Nobel and Handy Chemicals. The research team acknowledges the financial support from BRICS STI Framework Programme, PCA, WisDOT and We Energies.
1
Björnström J, Panas I. Antagonistic effect of superplasticizer and colloidal nano-silica in the hydration of alite and belite pastes. Journal of Materials Science, 2007, 11(42): 3901–3907

DOI

2
Collepardi M, Ogoumah J, Skarp U, Troli R. Influence of Amorphous Colloidal Silica on the Properties of Self-Compacting Concretes. In: Proceedings of the International Conference, Challenges in Concrete Construction- Innovations and Developments  in  Concrete  Materials  and  Construction, Dundee, UK, 2002.

3
Ye Q, Zhang Z, Kong D, Chen R. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction & Building Materials, 2007, 21(3): 539–545

DOI

4
Flores-Vivian I, Sobolev K, Torres-Martinez L, Cuellar E, Valdez P, Zarazua E. Performance of Cement Systems with Nano- SiO2 Particles Produced Using Sol-gel Method. Transportation Research Record, 2010, 1: 10–14

DOI

5
SobolevK. Modern developments related to nanotechnology and nanoengineering of concrete.Frontiers of Structural and Civil Engineering, 2016, 10(2): 131–141

6
PotapovV, ShitikovE, TrutnevN, GorbachV, PortnyaginN. Influence of Silica Nanoparticles on the Strength Characteristics of Cement Samples.Glass Physics and Chemistry, 2001, 1(37): 98–105

7
MoiniM, Flores-VivianI, AmirjanovA, SobolevK. The optimization of aggregate blends for sustainable low cement concrete.Construction &Building Materials, 2015, 93: 627–634

DOI

8
Langan B, Weng K, Ward M. Effect of silica fume and fly ash on heat of hydration of portland cement. Cement and Concrete Research, 2002, 32(7): 1045–1051

DOI

9
Flores-Vivian I, Pradoto R, Moini M, Sobolev K. The use of nanoparticles to improve the performance of concrete. In: Nano Conference, Brno, Czech Republic, EU, 2013

10
Björnström J, Martinelli A, Matic A, Börjesson L, Panas I. Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement. Chemical Physics Letters, 2004, 392(1–3): 242–248

DOI

11
Gaitero J J, Campillo I, Guerrero A. Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cement and Concrete Research, 2008, 38(8–9): 1112–1118

DOI

12
Jansson I, Skarp U, Bigley C. The value of colloidal silica for enhanced durability in high fluidity cement based mixes. In: the 5 International RILEM symposium on self-compacting concrete, 2007

13
Green B. Development of a high-density cementitious rock-matching grout using nano-particles. In: Proceedings of ACI Session on “Nanotechnology of Concrete: Recent Developments and Future Perspectives”, 2008

14
GawellK. Can Geothermal Energy Offset Global Warming? Renewable Energy News & Information, 2008

15
SobolevK. Nanotechnology and Nanoengineering of Construction Materials.In: Nanotechnology in Construction, Proceedings of NICOM5, 2015, 3–13

16
KagelA. The State of Geothermal Technology Part II: Surface Technology.Geothermal Energy Association, 2008

17
Yokogawa Corporation of America.Yokogawa in the Power Industry,Bulletin 53T01A01-01E, 2005

18
KutepovA, PotapovV. Movement and mass exchange of liquid drop in spinned flow of geothermal medium.Tear. Osnovy Khim. Tekh., 2000, 34(2)

19
Brazhnikov S, Generalov M, Taitnev N. Vacuum Sublimation Technique for Preparing Ultradispersed Powders of Inorganic Salts. Khim. Mashinoslr. (Moscow), 2004, 12: 12–15

20
ASTM C778. American Society for Testing and Materials. Standard specification of standard sand, 2006, 372–374

21
Zhuravlev L. The surface chemistry of amorphous silica. Zhuravlev model. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2000, 173(1): 1–38

DOI

22
Mindess S, Young J F, Darwin D. Concrete, 2nd ed., Upper Saddle River, NJ: Prentice Hall, 2003

23
ASTM C1679 – 09. American Society for Testing and Materials. Standard Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry, 2009

24
Wang K, Ge Z, Grove J, Ruiz J M, Rasmussen R, Ferragut T. Developing a Simple and Rapid Test for Monitoring the Heat Evolution of Concrete Mixtures for Both Laboratory and Field Applications. Center for Transportation Research and Education, Iowa State University, 2007

25
Muzenski S, Flores-Vivian I, Sobolev K. Hydrophobic engineered cementitious composites for highway applications. Cement and Concrete Composites, 2015, 57: 68–74

DOI

26
ASTM C1437-07. American Society for Testing and Materials. Test Method for Flow of Hydraulic Cement Mortar, 2007, 611–612

27
ASTM C109-07. American Society for Testing and Materials. Compressive Strength of Hydraulic Cement Mortars (using 2-in or 50-mm Cube Specimens), 2007, 64–68

28
IS 5816:1999. Splitting tensile strength of concrete- Method of Test, Bureau of Indian standards, 1999

29
Quercia G, Spiesz P, Husken G, Brouwers J. Effects of amorphous nano-silica additions on mechanical durability performance of SCC mixtures. In: International Congress on Durability of Concrete, Trondheim, Norway, 2012

30
Sobolev K, Lin Z, Flores-Vivian I, Pradoto R. Nano-Engineered Cements with Enhanced Mechanical Performance. Journal of the American Ceramic Society, 2016, 99(2): 564–572

DOI

Outlines

/