Experimental study and field application of calcium sulfoaluminate cement for rapid repair of concrete pavements

Yanhua GUAN , Ying GAO , Renjuan SUN , Moon C. WON , Zhi GE

Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 338 -345.

PDF (2661KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 338 -345. DOI: 10.1007/s11709-017-0411-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Experimental study and field application of calcium sulfoaluminate cement for rapid repair of concrete pavements

Author information +
History +
PDF (2661KB)

Abstract

The fast-track repair of deteriorated concrete pavement requires materials that can be placed, cured, and opened to the traffic in a short period. Type III cement and Calcium Sulfoaluminate (CSA) cement are the most commonly used fast-setting hydraulic cement (FSHC). In this study, the properties of Type III and CSA cement concrete, including compressive strength, coefficient of thermal expansion (CTE) and shrinkage were evaluated. The test results indicate that compressive strength of FSHC concrete increased rapidly at the early age. CSA cement concrete had higher early-age and long term strength. The shrinkage of CSA cement concrete was lower than that of Type III cement concrete. Both CSA and Type III cement concrete had similar CTE values. Based on the laboratory results, the CSA cement was selected as the partial-depth rapid repair material for a distressed continuously reinforced concrete pavement. The data collected during and after the repair show that the CSA cement concrete had good short-term and long-term performances and, therefore, was suitable for the rapid repair of concrete pavement.

Keywords

Calcium Sulfoaluminate (CSA) cement / Type III cement / coefficient of thermal expansion (CTE) / shrinkage / rapid repair

Cite this article

Download citation ▾
Yanhua GUAN, Ying GAO, Renjuan SUN, Moon C. WON, Zhi GE. Experimental study and field application of calcium sulfoaluminate cement for rapid repair of concrete pavements. Front. Struct. Civ. Eng., 2017, 11(3): 338-345 DOI:10.1007/s11709-017-0411-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen DLin  HSun R . Field performance evaluations of partial-depth repairs. Construction & Building Materials201125(3): 1369–1378

[2]

CalTran CDOT. Maintenance Technical Advisory Guide Volume II- Rigid pavement preservation (2nd Edition). Caltrans Division of Maintenance2007

[3]

ACPA. Guidelines for partial-depth spall repair. Concrete Paving Technology. American Concrete Pavement Association2007, 15p

[4]

Hou YSun  FSun W Guo MXing  CWu J . Quasi-brittle fracture modeling of preflawed bitumen using a diffuse interface model. Advances in Material Science and Engineering20162016(6): 1–7

[5]

Hou YWang  LYue P Pauli T Sun W. Modeling mode I cracking failure in asphalt binder by using nonconserved phase-field model. Journal of Materials in Civil Engineering201426(4): 684–691

[6]

Buch NVan Dam  T JPeterson  KSutter L . Evaluation of high-early strength PCC mixtures used in full depth repairs. Construction & Building Materials200822(3): 162–174

[7]

Quillin K. Performance of belite–sulfoaluminate cements. Cement and Concrete Research200131(9): 1341–1349

[8]

Glasser F PZhang  L. High-performance cement matrices based on calcium sulfoaluminate–belite compositions. Cement and Concrete Research200131(12): 1881–1886

[9]

Odler I. Special Inorganic Cements. CRC Press2000

[10]

García-Maté M De la Torre A G León-Reina L Aranda M A G Santacruz I . Hydration studies of calcium sulfoaluminate cements blended with fly ash. Cement and Concrete Research201354: 12–20

[11]

Cau Dit Coumes C Courtois S Peysson S Ambroise J Pera J. Calcium sulfoaluminate cement blended with OPC: a potential binder to encapsulate low-level radioactive slurries of complex chemistry. Cement and Concrete Research200939(9): 740–747 doi:10.1016/j.cemconres.2009.05.016

[12]

Zhou QMilestone  N BHayes  M. An alternative to Portland Cement for waste encapsulation—The calcium sulfoaluminate cement system. Journal of Hazardous Materials2006136(1): 120–129

[13]

Aranda MDe la Torre  A G. Sulfoaluminate cement. Eco-Efficient Concrete2013, 488–522

[14]

Alaoui AFeraille  ASteckmeyer A Roy R L . New Cements for Sustainable Development. 12th International Congress on the Chemistry of Cement2007, 1–8

[15]

Gartner E. Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research200434(9): 1489–1498

[16]

Popescu C DMuntean  MSharp J H . Industrial trial production of low energy belite cement. Cement and Concrete Composites200325(7): 689–693

[17]

Sharp J HLawrence  C DYang  R. Calcium sulfoaluminate cements-low-energy cements, special cements or what? Advances in Cement Research199911(1): 3–13 doi:10.1680/adcr.1999.11.1.3

[18]

Hou YWang  LYue P Sun W. Fracture failure in crack interaction of asphalt binder by using a phase field approach. Materials and Structures201548(9): 2997–3008

[19]

Sun R JWon  HWon M C . The application and early-age behaviors of continuously reinforced bonded concrete overlay of distressed jointed concrete pavements. Journal of Testing and Evaluation201139(5): 208–215

[20]

Thomas J J. The Science of Concrete. Report submitted to the Infrastructure Technology Institute for TEA-212010

[21]

Hou YWang  LPauli T Sun W. Investigation of the asphalt self-healing mechanism using a phase-field model. Journal of Materials in Civil Engineering201527: 040141183

[22]

Heath A CRoesler  J RHarvey  J T. Modeling longitudinal, corner and transverse cracking in jointed concrete pavements. International Journal of Pavement Engineering20034(1): 51–58 doi:10.1080/102984303100016073393

[23]

Heath A CRoesler  J R. Top-down cracking of rigid pavements constructed with fast-setting hydraulic cement concrete. Transportation Research Record2000,  1712: 3‒12 

[24]

Heath A CRoesler  J R. Shrinkage and Thermal Cracking of Fast Setting Hydraulic Cement Concrete Pavements in Palmdale, California. Report for California Department of Transportation1999

[25]

Committee A. Standard Practice for Selecting Proportions for Normal, Heavyweight and Mass Concrete. Reported by ACI Committee 2111991, 1–91

[26]

ASTM. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM C39-03. West Conshohocken2003

[27]

ASTM. Standard Test Method for Linear Shrinkage and Coefficient Ecpansion of Chemical-resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concrete. ASTM C531-05. West Conshohocken: ASTM international2005

[28]

AASHTO: Standard Method for the Coefficient of Thermal Expansion of Hydraulic Cement Concrete. AASHTO TP60-002000

[29]

Won M. Improvements of testing procedures for concrete coefficient of thermal expansion. Transportation Research Record20051919(1): 23–28

[30]

Won M CKim  S MMerritt  DMccullough B F . Horizontal Cracking and Pavement Distress in Portland Cement Concrete Pavement. International Air Transport Conference2002

[31]

Abrams D A. Design of Concrete Mixtures, Vol. 1: Structural Materials Research Laboratory. Lewis Institute1919

[32]

Yang H H. Pavements Analysis and Design. Prentice Hall2004

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2661KB)

3066

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/