Seismic fragility curves for structures using non-parametric representations

Chu MAI , Katerina KONAKLI , Bruno SUDRET

Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 169 -186.

PDF (2574KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 169 -186. DOI: 10.1007/s11709-017-0385-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Seismic fragility curves for structures using non-parametric representations

Author information +
History +
PDF (2574KB)

Abstract

Fragility curves are commonly used in civil engineering to assess the vulnerability of structures to earthquakes. The probability of failure associated with a prescribed criterion (e.g., the maximal inter-storey drift of a building exceeding a certain threshold) is represented as a function of the intensity of the earthquake ground motion (e.g., peak ground acceleration or spectral acceleration). The classical approach relies on assuming a lognormal shape of the fragility curves; it is thus parametric. In this paper, we introduce two non-parametric approaches to establish the fragility curves without employing the above assumption, namely binned Monte Carlo simulation and kernel density estimation. As an illustration, we compute the fragility curves for a three-storey steel frame using a large number of synthetic ground motions. The curves obtained with the non-parametric approaches are compared with respective curves based on the lognormal assumption. A similar comparison is presented for a case when a limited number of recorded ground motions is available. It is found that the accuracy of the lognormal curves depends on the ground motion intensity measure, the failure criterion and most importantly, on the employed method for estimating the parameters of the lognormal shape.

Keywords

earthquake engineering / fragility curves / lognormal assumption / non-parametric approach / kernel density estimation / epistemic uncertainty

Cite this article

Download citation ▾
Chu MAI, Katerina KONAKLI, Bruno SUDRET. Seismic fragility curves for structures using non-parametric representations. Front. Struct. Civ. Eng., 2017, 11(2): 169-186 DOI:10.1007/s11709-017-0385-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Porter K A. An overview of PEER's performance-based earthquake engineering methodology. In: Proc. 9th Int. Conf. on Applications of Stat. and Prob. in Civil Engineering (ICASP9), San Francisco2003, 6–9

[2]

Baker J WCornell C A. Uncertainty propagation in probabilistic seismic loss estimation. Structural Safety200830(3): 236–252

[3]

Günay SMosalam K M. PEER performance-based earthquake engineering methodology, revisited. Journal of Earthquake Engineering201317(6): 829–858

[4]

Mackie KStojadinovic B. Fragility basis for California highway overpass bridge seismic decision making. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley2005.

[5]

Ellingwood B RKinali K. Quantifying and communicating uncertainty in seismic risk assessment. Structural Safety200931(2): 179–187

[6]

Seo JDuenas-Osorio LCraig J IGoodno B J. Metamodel-based regional vulnerability estimate of irregular steel moment-frame structures subjected to earthquake events. Engineering Structures201245: 585–597

[7]

Banerjee SShinozuka M. Nonlinear static procedure for seismic vulnerability assessment of bridges. Comput-Aided Civ Inf200722(4): 293–305

[8]

Richardson J EBagchi GBrazee R J. The seismic safety margins research program of the U.S. Nuclear Regulatory Commission. Nuclear Engineering and Design198059(1): 15–25

[9]

Pei SVan De Lindt J. Methodology for earthquake-induced loss estimation: An application to woodframe buildings. Structural Safety200931(1): 31–42

[10]

Eads LMiranda EKrawinkler HLignos D G. An efficient method for estimating the collapse risk of structures in seismic regions. Earthquake Engineering & Structural Dynamics201342(1): 25–41

[11]

Dukes JDesRoches RPadgett J E. Sensitivity study of design parameters used to develop bridge specific fragility curves. In: Proceedings of the 15th World Conf. Earthquake Eng2012

[12]

Güneyisi E MAltay G. Seismic fragility assessment of effectiveness of viscous dampers in R/C buildings under scenario earthquakes. Structural Safety200830(5): 461–480

[13]

Seyedi D MGehl PDouglas JDavenne LMezher NGhavamian S. Development of seismic fragility surfaces for reinforced concrete buildings by means of nonlinear time-history analysis. Earthquake Engineering & Structural Dynamics201039(1): 91–108

[14]

Gardoni PDer Kiureghian AMosalam K M. Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations. Journal of Engineering Mechanics2002128(10): 1024–1038

[15]

Ghosh JPadgett J E. Aging considerations in the development of time-dependent seismic fragility curves. Journal of Structural Engineering2010136(12): 1497–1511

[16]

Argyroudis SPitilakis K. Seismic fragility curves of shallow tunnels in alluvial deposits. Soil Dynamics and Earthquake Engineering201235: 1–12

[17]

Chiou JChiang CYang HHsu S. Developing fragility curves for a pile-supported wharf. Soil Dynamics and Earthquake Engineering201131(5-6): 830–840

[18]

Quilligan A OConnor APakrashi V. Fragility analysis of steel and concrete wind turbine towers. Engineering Structures201236: 270–282

[19]

Borgonovo EZentner IPellegri ATarantola Sde Rocquigny E. On the importance of uncertain factors in seismic fragility assessment. Reliability Engineering & System Safety2013109(0): 66–76

[20]

Karantoni FTsionis GLyrantzaki FFardis M N. Seismic fragility of regular masonry buildings for in-plane and out-of-plane failure. Earthquakes and Structures20146(6): 689–713

[21]

Rossetto TElnashai A. A new analytical procedure for the derivation of displacementbased vulnerability curves for populations of RC structures. Engineering Structures200527(3): 397–409

[22]

Shinozuka MFeng MLee JNaganuma T. Statistical analysis of fragility curves. Journal of Engineering Mechanics2000126(12): 1224–1231

[23]

Ellingwood B R. Earthquake risk assessment of building structures. Reliability Engineering & System Safety200174(3): 251–262

[24]

Zentner I. Numerical computation of fragility curves for NPP equipment. Nuclear Engineering and Design2010240(6): 1614–1621

[25]

Gencturk BElnashai ASong J. Fragility relationships for populations of woodframe structures based on inelastic response. Journal of Earthquake Engineering200812(sup2): 119–128

[26]

Jeong S HMwafy A MElnashai A S. Probabilistic seismic performance assessment of code-compliant multi-story RC buildings. Engineering Structures201234: 527–537

[27]

Banerjee SShinozuka M. Mechanistic quantification of RC bridge damage states under earthquake through fragility analysis. Probabilistic Engineering Mechanics200823(1): 12–22

[28]

Karamlou ABocchini P. Computation of bridge seismic fragility by large-scale simulation for probabilistic resilience analysis. Earthquake Engineering & Structural Dynamics201544(12): 1959–1978

[29]

Mai C VSudret BMackie KStojadinovic BKonakli K. Non parametric fragility curves for bridges using recorded ground motions. In: Cunha A, Caetano E, Ribeiro P, Müller G, eds. IX International Conference on Structural Dynamics, Porto, Portugal2014, 2831–2838

[30]

Rezaeian SDer Kiureghian A. A stochastic ground motion model with separable temporal and spectral nonstationarities. Earthquake Engineering & Structural Dynamics200837(13): 1565–1584

[31]

Choi EDesRoches RNielson B. Seismic fragility of typical bridges in moderate seismic zones. Engineering Structures200426(2): 187–199

[32]

Padgett J EDesRoches R. Methodology for the development of analytical fragility curves for retro_tted bridges. Earthquake Engineering & Structural Dynamics200837(8): 1157–1174

[33]

Zareian FKrawinkler H. Assessment of probability of collapse and design for collapse safety. Earthquake Engineering & Structural Dynamics200736(13): 1901–1914

[34]

Shome NCornell C ABazzurro PCarballo J E. Earthquakes, records, and nonlinear responses. Earthquake Spectra199814(3): 469–500

[35]

Luco NBazzurro P. Does amplitude scaling of ground motion records result in biased nonlinear structural drift responses? Earthquake Engineering & Structural Dynamics200736(13): 1813–1835

[36]

Cimellaro G PReinhorn A MD’Ambrisi ADe Stefano M. Fragility analysis and seismic record selection. Journal of Structural Engineering2009137(3): 379–390

[37]

Mehdizadeh MMackie K RNielson B G. Scaling bias and record selection for fragility analysis. In: Proceedings of the 15th World Conf. Earthquake Eng2012

[38]

Bazzurro PCornell C AShome NCarballo J E. Three proposals for characterizing MDOF nonlinear seismic response. Journal of Structural Engineering1998124(11): 1281–1289

[39]

Vamvatsikos DCornell C A. Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics200231(3): 491–514

[40]

Wand MJones M C. Kernel smoothing. Chapman and Hall1995

[41]

Duong T. Bandwidth selectors for multivariate kernel density estimation. Dissertation of the School of mathematics and Statistics, University of Western Australia2004

[42]

Duong THazelton M L. Cross-validation bandwidth matrices for multivariate kernel density estimation. Scandinavian Journal of Statistics200532(3): 485–506

[43]

Frankel A DMueller C SBarnhard T PLeyendecker E VWesson R LHarmsen S CKlein F WPerkins D MDickman N CHanson S LHopper M G. USGS national seismic hazard maps. Earthquake Spectra200016(1): 1–19

[44]

Sudret BMai C V. Calcul des courbes de fragilité par approches non-paramétriques. In: Proc. 21e Congrès Français de Mécanique (CFM21), Bordeaux2013

[45]

Bradley B ALee D S. Accuracy of approximate methods of uncertainty propagation in seismic loss estimation. Structural Safety201032(1): 13–24

[46]

Liel A BHaselton C BDeierlein G GBaker J W. Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings. Structural Safety200931(2): 197–211

[47]

Efron B. Bootstrap methods: another look at the Jackknife. Annals of Statistics19797(1): 1–26

[48]

Kwong N SChopra A KMcGuire R K. Evaluation of ground motion selection and modification procedures using synthetic ground motions. Earthquake Engineering & Structural Dynamics201544(11): 1841–1861

[49]

Rezaeian SDer Kiureghian A. Simulation of synthetic ground motions for specified earthquake and site characteristics. Earthquake Engineering & Structural Dynamics201039(10): 1155–1180

[50]

Vetter CTaanidis A A. Comparison of alternative stochastic ground motion models for seismic risk characterization. Soil Dynamics and Earthquake Engineering201458: 48–65

[51]

Boore D M. Simulation of Ground Motion Using the Stochastic Method. Pure and Applied Geophysics2003160(3): 635–676

[52]

Eurocode 1. Actions on structures- Part 1–1: general actions- densities, self-weight, imposed loads for buildings. 2004

[53]

Pacific Earthquake Engineering and Research Center. OpenSees: The Open System for Earthquake Engineering Simulation, 2004

[54]

Eurocode 3. Design of steel structures- Part 1–1: General rules and rules for buildings. 2005

[55]

Joint Committee on Structural Safety, . Probabilistic Model Code- Part 3: Resistance Models, 2001

[56]

Deierlein G GReinhorn A MWillford M R. Nonlinear structural analysis for seismic design. NEHRP Seismic Design Technical Brief No 2010, 4

[57]

Mackie KStojadinovic B. Improving probabilistic seismic demand models through refined intensity measures. In: Proceeding of the 13th World Conf. Earthquake Eng. International Association for Earthquake Eng, Japan2004

[58]

Padgett JNielson BDesRoches R. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios. Earthquake Engineering & Structural Dynamics200837(5): 711–725

[59]

Cornell CJalayer FHamburger RFoutch D. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines. Journal of Structural Engineering2002128(4): 526–533

[60]

Lagaros N DFragiadakis M. Fragility assessment of steel frames using neural networks. Earthquake Spectra200723(4): 735–752

[61]

Federal Emergency Management Agency. Washington, DC. Commentary for the seismic rehabilitation of buildings2000

[62]

Eurocode 8. Design of structures for earthquake resistance- Part 1: General rules, seismic actions and rules for buildings, 2004

[63]

Mackie KStojadinovic B. Seismic demands for performance-based design of bridges. Tech. Rep.; Pacific Earthquake Engineering Research Center2003

[64]

Ramamoorthy S KGardoni PBracci J. Probabilistic demand models and fragility curves for reinforced concrete frames. Journal of Structural Engineering2006132(10): 1563–1572

[65]

Bai J WGardoni PHueste M D. Story-specific demand models and seismic fragility estimates for multi-story buildings. Structural Safety201133(1): 96–107

[66]

Muggeo V M R. Estimating regression models with unknown break-points. Statistics in Medicine200322(19): 3055–3071

[67]

Duong T. ks: kernel density estimation and kernel discriminant analysis for multivariate data in R. Journal of Statistical Software200721(7): 1–16

[68]

Choun Y SElnashai A S. A simplified framework for probabilistic earthquake loss estimation. Probabilistic Engineering Mechanics201025(4): 355–364

[69]

Marsh M LStringer S J. Performance-based seismic bridge design, a synthesis of highway practice. vol. 440. Transportation Research Board, Washington D C2013

[70]

Lu YGu XGuan J. Probabilistic drift limits and performance evaluation of reinforced concrete columns. Journal of Structural Engineering2005131(6): 966–978

[71]

Jankovic SStojadinovic B. Probabilistic performance based seismic demand model for R/C frame buildings. In: Proceeding of the 13th World Conf. Earthquake Eng2004

[72]

Jalayer FCornell C A. Alternative non-linear demand estimation methods for probability-based seismic assessments. Earthquake Engineering & Structural Dynamics200938(8): 951–972

[73]

Baker J W. Probabilistic structural response assessment using vector-valued intensity measures. Earthquake Engineering & Structural Dynamics200736(13): 1861–1883

[74]

Celik O CEllingwood B. Seismic fragilities for non-ductile reinforced concrete frames- role of aleatoric and epistemic uncertainties. Structural Safety201032(1): 1–12

[75]

Jalayer FDe Risi RManfredi G. Bayesian Cloud Analysis: effcient structural fragility assessment using linear regression. Bulletin of Earthquake Engineering201413(4): 1183–1203

[76]

Ghanem RSpanos P. Stochastic Finite Elements: A Spectral Approach. Courier Dover Publications2003

[77]

Blatman GSudret B. Adaptive sparse polynomial chaos expansion based on Least Angle Regression. Journal of Computational Physics2011230(6): 2345–2367

[78]

Sudret BPiquard VGuyonnet C. Use of polynomial chaos expansions to establish fragility curves in seismic risk assessment. In: G. De Roeck G. Degrande G L, Müller G, eds. In: Proceedings of the 8th International Conference Structural Dynamics (EURODYN 2011), Leuven, Belgium2011

[79]

Sudret BMai C V. Computing seismic fragility curves using polynomial chaos expansions. In: Deodatis G, ed. In: Proceedings of the 11th International Conference Structural Safety and Reliability (ICOSSAR'2013). New York, USA2013

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2574KB)

3984

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/