Seismic fragility curves for structures using non-parametric representations

Chu MAI , Katerina KONAKLI , Bruno SUDRET

Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 169 -186.

PDF (2574KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 169 -186. DOI: 10.1007/s11709-017-0385-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Seismic fragility curves for structures using non-parametric representations

Author information +
History +
PDF (2574KB)

Abstract

Fragility curves are commonly used in civil engineering to assess the vulnerability of structures to earthquakes. The probability of failure associated with a prescribed criterion (e.g., the maximal inter-storey drift of a building exceeding a certain threshold) is represented as a function of the intensity of the earthquake ground motion (e.g., peak ground acceleration or spectral acceleration). The classical approach relies on assuming a lognormal shape of the fragility curves; it is thus parametric. In this paper, we introduce two non-parametric approaches to establish the fragility curves without employing the above assumption, namely binned Monte Carlo simulation and kernel density estimation. As an illustration, we compute the fragility curves for a three-storey steel frame using a large number of synthetic ground motions. The curves obtained with the non-parametric approaches are compared with respective curves based on the lognormal assumption. A similar comparison is presented for a case when a limited number of recorded ground motions is available. It is found that the accuracy of the lognormal curves depends on the ground motion intensity measure, the failure criterion and most importantly, on the employed method for estimating the parameters of the lognormal shape.

Keywords

earthquake engineering / fragility curves / lognormal assumption / non-parametric approach / kernel density estimation / epistemic uncertainty

Cite this article

Download citation ▾
Chu MAI, Katerina KONAKLI, Bruno SUDRET. Seismic fragility curves for structures using non-parametric representations. Front. Struct. Civ. Eng., 2017, 11(2): 169-186 DOI:10.1007/s11709-017-0385-y

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

The severe socio-economic consequences of several recent earthquakes highlight the need for proper seismic risk assessment as a basis for efficient decision making on mitigation actions and disaster planning. To this end, the probabilistic performance-based earthquake engineering (PBEE) framework has been developed, which allows explicit evaluation of performance measures that serve as decision variables (DV) (e.g., monetary losses, casualties, downtime) accounting for the prevailing uncertainties (e.g., ground motion characteristics, structural properties, damage occurrence). The key steps in the PBEE framework comprise the identification of seismic hazard, the evaluation of structural response, damage analysis and eventually, consequence evaluation. In particular, the mean annual frequency of exceedance of a DV is evaluated as []:

Computation of fragility curves

Lognormal approach

Maximum likelihood estimation

Linear regression

Binned Monte Carlo simulation

Kernel density estimation

Epistemic uncertainty of fragility curves

Synthetic ground motions

Properties of recorded ground motions

Simulation of synthetic ground motions

Steel frame structure subject to synthetic ground motions

Problem setup

We determine the fragility curves for the three-storey three-span steel frame shown in Fig. 2. The dimensions of the structure are: storey-height H = 3 m, spanlength L = 5 m. The vertical load consists of dead load (weight of frame elements and supported oors) and live load (in accordance with Eurocode 1 []) resulting in a total distributed load on the beams q = 20 kN/m. In the preliminary design stage, the standard European I beams with designation IPE 300 A and IPE 330 O are chosen respectively for the beams and columns. The steel material has a nonlinear isotropic hardening behavior following the uniaxial Giuffre-Menegotto-Pinto steel model as implemented in the finite element software OpenSees []. Elling-wood and Kinali [] have shown that uncertainty in the properties of the steel material has a negligible effect on seismic fragility curves. Therefore, the mean material properties are used in the subsequent fragility analysis: E0 = 210; 000 MPa for the Young's modulus (initial elastic tangent in the stress-strain curve), fy = 264 MPa for the yield strength [,] and b = 0.01 for the strain hardening ratio (ratio of post-yield to initial tangent in the stress-strain curve). Figure 2 depicts the hysteretic behavior of the steel material at a specified section for an example ground motion. The structural components are modeled with nonlinear forcebased beam-column elements characterized by distributed plasticity along their lengths, while use of fiber sections allows modeling the plasticity over the element cross-sections []. The connections between structural elements are modeled with rigid nodes. The first two natural periods of the building obtained by modal analysis are T1 = 0:61 s and T2 = 0:181 s, corresponding to natural frequencies f1 = 1:64 Hz and f2 = 5:53 Hz. Rayleigh damping is considered with the damping ratio of the first two modes set equal to 2%.

Fragility curves

As described in Section 2, the lognormal approach relies on assuming that the fragility curves have the shape of a lognormal CDF and estimating the parameters of this CDF. Using the maximum likelihood estimation (MLE) approach, the observed failures for each drift threshold are modeled as outcomes of a Bernoulli experiment and the parameters (a, b) of the fragility curves are determined by maximizing the respective likelihood function. Using the linear regression (LR) technique, the parameters of the lognormal curves are derived by fitting a linear model to the paired data (ln IM, lnD). Figure 4 depicts the paired data (ln PGA, lnD) and (ln Sa; lnD) together with the fitted models based on linear regression. It can be seen that a single linear model is not appropriate for the cloud of points (ln Sa; lnD) and thus, bilinear regression is used in this case (see also [] for use of a similar model). The break point in the bilinear model (Sa = 0.45 g) is determined according to the method presented in [] using the R package segmented. When PGA is used as IM, the coefficient of determination of the fitted linear model is R2 = 0.663; when Sa is used as IM, it is R12=0.978 and R22=0.785 for the first and second part of the bilinear model, respectively. Note that use of Sa as IM leads to a smaller dispersion, i.e., a smaller ς in Eq. (6), as compared to PGA; this is expected since Sa is a structure-specific IM. In the bMCS method, the bin width h is set equal to 0.25 IMo. The resulting scale factors vary in the range [0.75; 1.25] corresponding to a bias ratio approximately equal to unity []. The KDE approach requires estimation of the bandwidth parameter and the bandwidth matrix. Using the cross-validation estimation implemented in Ref. [], these are determined as h = 0.133, H = [0.031 0.024; 0.024 0.027] When PGA is used as IM, and h = 0.155, H = [0.023 0.023; 0.023 0.024] when Sa is used as IM.

Estimation of epistemic uncertainty by bootstrap resampling

Concrete column subject to recorded ground motions

Discussion

Conclusions

In the case studies, the fragility curves are established for various drift thresholds and different types of the ground motion intensity measure, namely the peak ground acceleration (PGA), and the structure-specific spectral acceleration (Sa) and pseudo-spectral acceleration (Psa). The two non-parametric curves are always consistent, which proves the validity of the proposed techniques. Accordingly, the non-parametric curves are used as reference to assess the accuracy of the lognormal curves. The parameters of the latter are estimated with two approaches, namely by maximum likelihood estimation and by assuming a linear probabilistic seismic demand model in the log-scale. The maximum likelihood estimation approach is found to approximate fairly well the reference curves in most cases, especially when a structure-specific intensity measure is used; however, it smooths out some details that can be obtained with the non-parametric approaches. In contrast, the assumption of a linear demand model in the log-scale is found overall inaccurate. When integrated in the PBEE framework, inaccuracy in fragility estimation may induce errors in the probabilistic consequence estimates that serve as decision variables for risk mitigation actions. The bootstrap resampling technique is employed to assess effects of epistemic uncertainty in the non-parametric fragility curves. Results from bootstrap analysis validate the stability of the fragility estimates with the proposed non-parametric methods.

References

[1]

Porter K A. An overview of PEER's performance-based earthquake engineering methodology. In: Proc. 9th Int. Conf. on Applications of Stat. and Prob. in Civil Engineering (ICASP9), San Francisco2003, 6–9

[2]

Baker J WCornell C A. Uncertainty propagation in probabilistic seismic loss estimation. Structural Safety200830(3): 236–252

[3]

Günay SMosalam K M. PEER performance-based earthquake engineering methodology, revisited. Journal of Earthquake Engineering201317(6): 829–858

[4]

Mackie KStojadinovic B. Fragility basis for California highway overpass bridge seismic decision making. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley2005.

[5]

Ellingwood B RKinali K. Quantifying and communicating uncertainty in seismic risk assessment. Structural Safety200931(2): 179–187

[6]

Seo JDuenas-Osorio LCraig J IGoodno B J. Metamodel-based regional vulnerability estimate of irregular steel moment-frame structures subjected to earthquake events. Engineering Structures201245: 585–597

[7]

Banerjee SShinozuka M. Nonlinear static procedure for seismic vulnerability assessment of bridges. Comput-Aided Civ Inf200722(4): 293–305

[8]

Richardson J EBagchi GBrazee R J. The seismic safety margins research program of the U.S. Nuclear Regulatory Commission. Nuclear Engineering and Design198059(1): 15–25

[9]

Pei SVan De Lindt J. Methodology for earthquake-induced loss estimation: An application to woodframe buildings. Structural Safety200931(1): 31–42

[10]

Eads LMiranda EKrawinkler HLignos D G. An efficient method for estimating the collapse risk of structures in seismic regions. Earthquake Engineering & Structural Dynamics201342(1): 25–41

[11]

Dukes JDesRoches RPadgett J E. Sensitivity study of design parameters used to develop bridge specific fragility curves. In: Proceedings of the 15th World Conf. Earthquake Eng2012

[12]

Güneyisi E MAltay G. Seismic fragility assessment of effectiveness of viscous dampers in R/C buildings under scenario earthquakes. Structural Safety200830(5): 461–480

[13]

Seyedi D MGehl PDouglas JDavenne LMezher NGhavamian S. Development of seismic fragility surfaces for reinforced concrete buildings by means of nonlinear time-history analysis. Earthquake Engineering & Structural Dynamics201039(1): 91–108

[14]

Gardoni PDer Kiureghian AMosalam K M. Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations. Journal of Engineering Mechanics2002128(10): 1024–1038

[15]

Ghosh JPadgett J E. Aging considerations in the development of time-dependent seismic fragility curves. Journal of Structural Engineering2010136(12): 1497–1511

[16]

Argyroudis SPitilakis K. Seismic fragility curves of shallow tunnels in alluvial deposits. Soil Dynamics and Earthquake Engineering201235: 1–12

[17]

Chiou JChiang CYang HHsu S. Developing fragility curves for a pile-supported wharf. Soil Dynamics and Earthquake Engineering201131(5-6): 830–840

[18]

Quilligan A OConnor APakrashi V. Fragility analysis of steel and concrete wind turbine towers. Engineering Structures201236: 270–282

[19]

Borgonovo EZentner IPellegri ATarantola Sde Rocquigny E. On the importance of uncertain factors in seismic fragility assessment. Reliability Engineering & System Safety2013109(0): 66–76

[20]

Karantoni FTsionis GLyrantzaki FFardis M N. Seismic fragility of regular masonry buildings for in-plane and out-of-plane failure. Earthquakes and Structures20146(6): 689–713

[21]

Rossetto TElnashai A. A new analytical procedure for the derivation of displacementbased vulnerability curves for populations of RC structures. Engineering Structures200527(3): 397–409

[22]

Shinozuka MFeng MLee JNaganuma T. Statistical analysis of fragility curves. Journal of Engineering Mechanics2000126(12): 1224–1231

[23]

Ellingwood B R. Earthquake risk assessment of building structures. Reliability Engineering & System Safety200174(3): 251–262

[24]

Zentner I. Numerical computation of fragility curves for NPP equipment. Nuclear Engineering and Design2010240(6): 1614–1621

[25]

Gencturk BElnashai ASong J. Fragility relationships for populations of woodframe structures based on inelastic response. Journal of Earthquake Engineering200812(sup2): 119–128

[26]

Jeong S HMwafy A MElnashai A S. Probabilistic seismic performance assessment of code-compliant multi-story RC buildings. Engineering Structures201234: 527–537

[27]

Banerjee SShinozuka M. Mechanistic quantification of RC bridge damage states under earthquake through fragility analysis. Probabilistic Engineering Mechanics200823(1): 12–22

[28]

Karamlou ABocchini P. Computation of bridge seismic fragility by large-scale simulation for probabilistic resilience analysis. Earthquake Engineering & Structural Dynamics201544(12): 1959–1978

[29]

Mai C VSudret BMackie KStojadinovic BKonakli K. Non parametric fragility curves for bridges using recorded ground motions. In: Cunha A, Caetano E, Ribeiro P, Müller G, eds. IX International Conference on Structural Dynamics, Porto, Portugal2014, 2831–2838

[30]

Rezaeian SDer Kiureghian A. A stochastic ground motion model with separable temporal and spectral nonstationarities. Earthquake Engineering & Structural Dynamics200837(13): 1565–1584

[31]

Choi EDesRoches RNielson B. Seismic fragility of typical bridges in moderate seismic zones. Engineering Structures200426(2): 187–199

[32]

Padgett J EDesRoches R. Methodology for the development of analytical fragility curves for retro_tted bridges. Earthquake Engineering & Structural Dynamics200837(8): 1157–1174

[33]

Zareian FKrawinkler H. Assessment of probability of collapse and design for collapse safety. Earthquake Engineering & Structural Dynamics200736(13): 1901–1914

[34]

Shome NCornell C ABazzurro PCarballo J E. Earthquakes, records, and nonlinear responses. Earthquake Spectra199814(3): 469–500

[35]

Luco NBazzurro P. Does amplitude scaling of ground motion records result in biased nonlinear structural drift responses? Earthquake Engineering & Structural Dynamics200736(13): 1813–1835

[36]

Cimellaro G PReinhorn A MD’Ambrisi ADe Stefano M. Fragility analysis and seismic record selection. Journal of Structural Engineering2009137(3): 379–390

[37]

Mehdizadeh MMackie K RNielson B G. Scaling bias and record selection for fragility analysis. In: Proceedings of the 15th World Conf. Earthquake Eng2012

[38]

Bazzurro PCornell C AShome NCarballo J E. Three proposals for characterizing MDOF nonlinear seismic response. Journal of Structural Engineering1998124(11): 1281–1289

[39]

Vamvatsikos DCornell C A. Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics200231(3): 491–514

[40]

Wand MJones M C. Kernel smoothing. Chapman and Hall1995

[41]

Duong T. Bandwidth selectors for multivariate kernel density estimation. Dissertation of the School of mathematics and Statistics, University of Western Australia2004

[42]

Duong THazelton M L. Cross-validation bandwidth matrices for multivariate kernel density estimation. Scandinavian Journal of Statistics200532(3): 485–506

[43]

Frankel A DMueller C SBarnhard T PLeyendecker E VWesson R LHarmsen S CKlein F WPerkins D MDickman N CHanson S LHopper M G. USGS national seismic hazard maps. Earthquake Spectra200016(1): 1–19

[44]

Sudret BMai C V. Calcul des courbes de fragilité par approches non-paramétriques. In: Proc. 21e Congrès Français de Mécanique (CFM21), Bordeaux2013

[45]

Bradley B ALee D S. Accuracy of approximate methods of uncertainty propagation in seismic loss estimation. Structural Safety201032(1): 13–24

[46]

Liel A BHaselton C BDeierlein G GBaker J W. Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings. Structural Safety200931(2): 197–211

[47]

Efron B. Bootstrap methods: another look at the Jackknife. Annals of Statistics19797(1): 1–26

[48]

Kwong N SChopra A KMcGuire R K. Evaluation of ground motion selection and modification procedures using synthetic ground motions. Earthquake Engineering & Structural Dynamics201544(11): 1841–1861

[49]

Rezaeian SDer Kiureghian A. Simulation of synthetic ground motions for specified earthquake and site characteristics. Earthquake Engineering & Structural Dynamics201039(10): 1155–1180

[50]

Vetter CTaanidis A A. Comparison of alternative stochastic ground motion models for seismic risk characterization. Soil Dynamics and Earthquake Engineering201458: 48–65

[51]

Boore D M. Simulation of Ground Motion Using the Stochastic Method. Pure and Applied Geophysics2003160(3): 635–676

[52]

Eurocode 1. Actions on structures- Part 1–1: general actions- densities, self-weight, imposed loads for buildings. 2004

[53]

Pacific Earthquake Engineering and Research Center. OpenSees: The Open System for Earthquake Engineering Simulation, 2004

[54]

Eurocode 3. Design of steel structures- Part 1–1: General rules and rules for buildings. 2005

[55]

Joint Committee on Structural Safety, . Probabilistic Model Code- Part 3: Resistance Models, 2001

[56]

Deierlein G GReinhorn A MWillford M R. Nonlinear structural analysis for seismic design. NEHRP Seismic Design Technical Brief No 2010, 4

[57]

Mackie KStojadinovic B. Improving probabilistic seismic demand models through refined intensity measures. In: Proceeding of the 13th World Conf. Earthquake Eng. International Association for Earthquake Eng, Japan2004

[58]

Padgett JNielson BDesRoches R. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios. Earthquake Engineering & Structural Dynamics200837(5): 711–725

[59]

Cornell CJalayer FHamburger RFoutch D. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines. Journal of Structural Engineering2002128(4): 526–533

[60]

Lagaros N DFragiadakis M. Fragility assessment of steel frames using neural networks. Earthquake Spectra200723(4): 735–752

[61]

Federal Emergency Management Agency. Washington, DC. Commentary for the seismic rehabilitation of buildings2000

[62]

Eurocode 8. Design of structures for earthquake resistance- Part 1: General rules, seismic actions and rules for buildings, 2004

[63]

Mackie KStojadinovic B. Seismic demands for performance-based design of bridges. Tech. Rep.; Pacific Earthquake Engineering Research Center2003

[64]

Ramamoorthy S KGardoni PBracci J. Probabilistic demand models and fragility curves for reinforced concrete frames. Journal of Structural Engineering2006132(10): 1563–1572

[65]

Bai J WGardoni PHueste M D. Story-specific demand models and seismic fragility estimates for multi-story buildings. Structural Safety201133(1): 96–107

[66]

Muggeo V M R. Estimating regression models with unknown break-points. Statistics in Medicine200322(19): 3055–3071

[67]

Duong T. ks: kernel density estimation and kernel discriminant analysis for multivariate data in R. Journal of Statistical Software200721(7): 1–16

[68]

Choun Y SElnashai A S. A simplified framework for probabilistic earthquake loss estimation. Probabilistic Engineering Mechanics201025(4): 355–364

[69]

Marsh M LStringer S J. Performance-based seismic bridge design, a synthesis of highway practice. vol. 440. Transportation Research Board, Washington D C2013

[70]

Lu YGu XGuan J. Probabilistic drift limits and performance evaluation of reinforced concrete columns. Journal of Structural Engineering2005131(6): 966–978

[71]

Jankovic SStojadinovic B. Probabilistic performance based seismic demand model for R/C frame buildings. In: Proceeding of the 13th World Conf. Earthquake Eng2004

[72]

Jalayer FCornell C A. Alternative non-linear demand estimation methods for probability-based seismic assessments. Earthquake Engineering & Structural Dynamics200938(8): 951–972

[73]

Baker J W. Probabilistic structural response assessment using vector-valued intensity measures. Earthquake Engineering & Structural Dynamics200736(13): 1861–1883

[74]

Celik O CEllingwood B. Seismic fragilities for non-ductile reinforced concrete frames- role of aleatoric and epistemic uncertainties. Structural Safety201032(1): 1–12

[75]

Jalayer FDe Risi RManfredi G. Bayesian Cloud Analysis: effcient structural fragility assessment using linear regression. Bulletin of Earthquake Engineering201413(4): 1183–1203

[76]

Ghanem RSpanos P. Stochastic Finite Elements: A Spectral Approach. Courier Dover Publications2003

[77]

Blatman GSudret B. Adaptive sparse polynomial chaos expansion based on Least Angle Regression. Journal of Computational Physics2011230(6): 2345–2367

[78]

Sudret BPiquard VGuyonnet C. Use of polynomial chaos expansions to establish fragility curves in seismic risk assessment. In: G. De Roeck G. Degrande G L, Müller G, eds. In: Proceedings of the 8th International Conference Structural Dynamics (EURODYN 2011), Leuven, Belgium2011

[79]

Sudret BMai C V. Computing seismic fragility curves using polynomial chaos expansions. In: Deodatis G, ed. In: Proceedings of the 11th International Conference Structural Safety and Reliability (ICOSSAR'2013). New York, USA2013

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2574KB)

4149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/