Continuous modeling of soil morphology —thermomechanical behavior of embankment dams

Bettina ALBERS , Krzysztof WILMANSKI

Front. Struct. Civ. Eng. ›› 2011, Vol. 5 ›› Issue (1) : 11 -23.

PDF (364KB)
Front. Struct. Civ. Eng. ›› 2011, Vol. 5 ›› Issue (1) : 11 -23. DOI: 10.1007/s11709-010-0081-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Continuous modeling of soil morphology —thermomechanical behavior of embankment dams

Author information +
History +
PDF (364KB)

Abstract

Macroscopic modeling of soils is based on a number of properties that refer to the mesoscopic morphology. The most fundamental parameters of this art are: 1) coupling parameters between partial stresses of components and deformations of components, 2) porosities, 3) saturation, and 4) permeability and diffusivity, tortuosity.

The main aim of this paper is to present in juxtaposition continuous one-, two-, and three-component models of geomaterials appearing in construction of embankment dams. In particular, the above mentioned features, especially saturation with water and seepage problems, modeling of fluidization yielding piping, and generalizations of the Darcy law and changes of porosity, are presented.

Keywords

thermomechanical modeling / soil morphology / saturation / porosity

Cite this article

Download citation ▾
Bettina ALBERS, Krzysztof WILMANSKI. Continuous modeling of soil morphology —thermomechanical behavior of embankment dams. Front. Struct. Civ. Eng., 2011, 5(1): 11-23 DOI:10.1007/s11709-010-0081-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vaníček M, Vaníček I. Earth Structures in Transport, Water and Environmental Engineering (Geotechnical, Geological, and Earthquake Engineering). New York: Springer, 2008

[2]

Bowen R M. Incompressible porous media models by use of the theory of mixtures. International Journal of Engineering Science, 1980, 18(9): 1129–1148

[3]

Muir Wood D. Soil Behaviour and Critical State Soil Mechanics. Cambridge, UK: Cambridge University Press, 1991

[4]

Muir Wood D. Geotechnical Modelling. Oxfordshire: Spon Press, 2004

[5]

Lancellotta R. Geotechnical Engineering. Rotterdam: Balkema A. A., 1995

[6]

Bauer E. Constitutive modeling of critical states in hypoplasticity. In: Pande, Pietruszczak, eds. Proceedings of the Fifth International Symposium on Numerical Models in Geomechanics. Rotterdam: Balkema A. A., 1995, 1520

[7]

von Wolffersdorff P A. A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-frictional Materials, 1996, 1(3): 251–271

[8]

Kolymbas D. A ratedependent constitutive equation for soils. Mechanics Research Communications, 1977, 4(6): 367–372

[9]

Kolymbas D. Introduction to Hypoplasticity. Rotterdam: A. A. Balkema, 2000

[10]

Bauer E, Tantono S F, Zhu Y, Liu S, Kast K. Modeling rheological properties of materials for rockfill dams. In: Zhu Y, eds, Long Time Effects and Seepage Behavior of Dams. Nanjing: Hohai University Press, 2008, 73–80

[11]

Goodman M A, Cowin S C. A continuum theory for granular materials. Archive for Rational Mechanics and Analysis, 1972, 44(4): 249–266

[12]

Wang Y, Hutter K. A constitutive model of multiphase mixtures and its applications in shearing flows of saturated solid-fluid mixtures. Granular Matter, 1999, 1(4): 163–181

[13]

Wang Y, Hutter K. Shearing flows in a Goodman-Cowin type granular material-theory and numerical results. Particulate Science and Technology, 1999, 17(1-2): 97–124

[14]

Kirchner N. Thermodynamics of Structured Granular Materials. Dissertation for the Doctoral Degree. Berichte aus der Thermodynamik. Aachen: Shaker Verlag, 2001

[15]

Darcy H. Les Fontaines Publiques de la Ville de Dijon. Paris: Dalmont, 1856

[16]

von Terzaghi K. Erdbaumechanik auf bodenphysikalischer Grundlage. Leipzig: Deuticke, 1925

[17]

Bear J. Dynamics of Fluids in Porous Media. Dover: Dover Publication, 1972

[18]

Forchheimer P. Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing., 1901, 45: 1782–1788

[19]

Wilhelm T, Wilmanski K. On the onset of flow instabilities in granular media due to porosity inhomogeneities. International Journal of Multiphase Flow, 2002, 28(12): 1929–1944

[20]

Wilmanski K. A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials. Soil Dynamics and Earthquake Engineering, 2006, 26(6-7): 509–536

[21]

F. Gassmann; Über die Elastizität poröser Medien. In: Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 96. 1951, 1: 1–23

[22]

Bowen R M. Compressible porous media models by use of the theory of mixtures. International Journal of Engineering Science, 1982, 20(6): 697–735

[23]

Passman S L, Nunziato J W, Walsh E K. A theory of multiphase mixtures. In: Truesdell C, ed. Rational Thermodynamics, Berlin: Springer, 1984

[24]

Faria S H, Hutter K, Kirchner N, Wang Y. Continuum Description of Granular Materials. Heidelberg: Springer, 2009

[25]

Wilmanski K. A Thermodynamic model of compressible porous materials with the balance equation of porosity. Transport in Porous Media, 1998, 32(1): 21–47

[26]

Wilmanski K. Thermomechanics of Continua. Heidelberg: Springer, 1998

[27]

Wilmanski K. Continuum Thermodynamics. Part I: Foundations. Singapore: World Scientific, 2008

[28]

Albers B. Modeling and Numerical Analysis of Wave Propagation in Saturated and Partially Saturated Porous Media. Aachen: Shaker Verlag, 2009

[29]

Wilmanski K. On microstructural tests for poroelastic materials and corresponding Gassmanntype relations. Geotechnique, 2004, 54(9): 593–603

[30]

Biot M A, Willis D G. The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 1957, 24: 594–601

[31]

Epstein N. On tortuosity and the tortuosity factor in ow and diffusion through porous media. Chemical Engineering Science, 1989, 44(3): 777–779

[32]

Kozeny J. Über kapillare Leitung des Wassers im Boden (Aufstieg, Versickerung und Anwendung auf die Bewässerung). Sber. Akad. Wiss. Wien, 1927, 136 (Abt. IIa): 271–306

[33]

Biot M A. Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range. Journal of the Acoustical Society of America, 1956, 28(2): 168–178

[34]

Wilmanski K. Tortuosity and objective relative accelerations in the theory of porous materials. Proceedings of the Royal Society, Mathematical, Physical and Engineering Sciences, 2005, 461(2057): 1533–1561

[35]

Wesselingh J A, Krishna R. Mass Transfer in Multicomponent Mixtures. Delft: Delft University Press, 2000

[36]

Ruggeri T, Simič S. Mixture of gases with multi-temperature: Maxwellian iteration. In: Ruggeri T, Sammartino M, eds. Asymptotic Methods in Nonlinear Wave Phenomena. New Jersey: World Scientific, 2007, 186–194

[37]

Leşan D. On a theory of micromorphic elastic solids with microtemperatures. Journal of Thermal Stresses, 2001, 24(8): 737–752

[38]

Helmig R. Multiphase Flow and Transport Processes in the Subsurface. Heidelberg: Springer, 1997

[39]

Hartge K H, Horn R. Einführung in die Bodenphysik. Stuttgart: Schweizerbart, 1999

[40]

Schick P. Ein quantitatives Zwei-Komponenten-Modell der PorenwasserBindekräfte in teilgesättigten Böden. Habilitationthesis. München: Universität der Bundeswehr, 2003

[41]

Brooks R H, Corey A T. Hydraulic properties of porous media. In: Hydrology Papers, Vol. 3. Fort Collins: Colorado State University, 1964

[42]

van Genuchten M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America, 1980, 44: 892–898

[43]

Farouki O T. Ground thermal properties. In: Krzewinski T G, Tart R G, eds. Thermal Design Considerations in Frozen Ground Engineering. New York: ASCE, 1985: 186–203

[44]

Gontaszewska A. Thermophysical Properties of Soils in Vicinity of Zielona Gora in Relation to Soil Frost Depth. Dissertation for the Doctoral Degree. Poznan: University of Poznan, 2006

[45]

Chen S X. Thermal conductivity of sands. Heat and Mass Transfer, 2008, 44(10): 1241–1246

[46]

Mattsson H, Hellström J G I, Lundström S. On internal erosion in embankment dams: a literature survey of the phenomenon and the prospect to model it numerically. Report No. 2008:I14, 2008

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (364KB)

2679

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/