Continuous modeling of soil morphology —thermomechanical behavior of embankment dams

Bettina ALBERS, Krzysztof WILMANSKI

PDF(364 KB)
PDF(364 KB)
Front. Struct. Civ. Eng. ›› 2011, Vol. 5 ›› Issue (1) : 11-23. DOI: 10.1007/s11709-010-0081-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Continuous modeling of soil morphology —thermomechanical behavior of embankment dams

Author information +
History +

Abstract

Macroscopic modeling of soils is based on a number of properties that refer to the mesoscopic morphology. The most fundamental parameters of this art are: 1) coupling parameters between partial stresses of components and deformations of components, 2) porosities, 3) saturation, and 4) permeability and diffusivity, tortuosity.

The main aim of this paper is to present in juxtaposition continuous one-, two-, and three-component models of geomaterials appearing in construction of embankment dams. In particular, the above mentioned features, especially saturation with water and seepage problems, modeling of fluidization yielding piping, and generalizations of the Darcy law and changes of porosity, are presented.

Keywords

thermomechanical modeling / soil morphology / saturation / porosity

Cite this article

Download citation ▾
Bettina ALBERS, Krzysztof WILMANSKI. Continuous modeling of soil morphology —thermomechanical behavior of embankment dams. Front Arch Civil Eng Chin, 2011, 5(1): 11‒23 https://doi.org/10.1007/s11709-010-0081-7

References

[1]
Vaníček M, Vaníček I. Earth Structures in Transport, Water and Environmental Engineering (Geotechnical, Geological, and Earthquake Engineering). New York: Springer, 2008
[2]
Bowen R M. Incompressible porous media models by use of the theory of mixtures. International Journal of Engineering Science, 1980, 18(9): 1129–1148
CrossRef Google scholar
[3]
Muir Wood D. Soil Behaviour and Critical State Soil Mechanics. Cambridge, UK: Cambridge University Press, 1991
[4]
Muir Wood D. Geotechnical Modelling. Oxfordshire: Spon Press, 2004
[5]
Lancellotta R. Geotechnical Engineering. Rotterdam: Balkema A. A., 1995
[6]
Bauer E. Constitutive modeling of critical states in hypoplasticity. In: Pande, Pietruszczak, eds. Proceedings of the Fifth International Symposium on Numerical Models in Geomechanics. Rotterdam: Balkema A. A., 1995, 1520
[7]
von Wolffersdorff P A. A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-frictional Materials, 1996, 1(3): 251–271
CrossRef Google scholar
[8]
Kolymbas D. A ratedependent constitutive equation for soils. Mechanics Research Communications, 1977, 4(6): 367–372
CrossRef Google scholar
[9]
Kolymbas D. Introduction to Hypoplasticity. Rotterdam: A. A. Balkema, 2000
[10]
Bauer E, Tantono S F, Zhu Y, Liu S, Kast K. Modeling rheological properties of materials for rockfill dams. In: Zhu Y, eds, Long Time Effects and Seepage Behavior of Dams. Nanjing: Hohai University Press, 2008, 73–80
[11]
Goodman M A, Cowin S C. A continuum theory for granular materials. Archive for Rational Mechanics and Analysis, 1972, 44(4): 249–266
CrossRef Google scholar
[12]
Wang Y, Hutter K. A constitutive model of multiphase mixtures and its applications in shearing flows of saturated solid-fluid mixtures. Granular Matter, 1999, 1(4): 163–181
CrossRef Google scholar
[13]
Wang Y, Hutter K. Shearing flows in a Goodman-Cowin type granular material-theory and numerical results. Particulate Science and Technology, 1999, 17(1-2): 97–124
CrossRef Google scholar
[14]
Kirchner N. Thermodynamics of Structured Granular Materials. Dissertation for the Doctoral Degree. Berichte aus der Thermodynamik. Aachen: Shaker Verlag, 2001
[15]
Darcy H. Les Fontaines Publiques de la Ville de Dijon. Paris: Dalmont, 1856
[16]
von Terzaghi K. Erdbaumechanik auf bodenphysikalischer Grundlage. Leipzig: Deuticke, 1925
[17]
Bear J. Dynamics of Fluids in Porous Media. Dover: Dover Publication, 1972
[18]
Forchheimer P. Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing., 1901, 45: 1782–1788
[19]
Wilhelm T, Wilmanski K. On the onset of flow instabilities in granular media due to porosity inhomogeneities. International Journal of Multiphase Flow, 2002, 28(12): 1929–1944
CrossRef Google scholar
[20]
Wilmanski K. A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials. Soil Dynamics and Earthquake Engineering, 2006, 26(6-7): 509–536
CrossRef Google scholar
[21]
F. Gassmann; Über die Elastizität poröser Medien. In: Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 96. 1951, 1: 1–23
[22]
Bowen R M. Compressible porous media models by use of the theory of mixtures. International Journal of Engineering Science, 1982, 20(6): 697–735
CrossRef Google scholar
[23]
Passman S L, Nunziato J W, Walsh E K. A theory of multiphase mixtures. In: Truesdell C, ed. Rational Thermodynamics, Berlin: Springer, 1984
[24]
Faria S H, Hutter K, Kirchner N, Wang Y. Continuum Description of Granular Materials. Heidelberg: Springer, 2009
[25]
Wilmanski K. A Thermodynamic model of compressible porous materials with the balance equation of porosity. Transport in Porous Media, 1998, 32(1): 21–47
CrossRef Google scholar
[26]
Wilmanski K. Thermomechanics of Continua. Heidelberg: Springer, 1998
[27]
Wilmanski K. Continuum Thermodynamics. Part I: Foundations. Singapore: World Scientific, 2008
CrossRef Google scholar
[28]
Albers B. Modeling and Numerical Analysis of Wave Propagation in Saturated and Partially Saturated Porous Media. Aachen: Shaker Verlag, 2009
[29]
Wilmanski K. On microstructural tests for poroelastic materials and corresponding Gassmanntype relations. Geotechnique, 2004, 54(9): 593–603
[30]
Biot M A, Willis D G. The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 1957, 24: 594–601
[31]
Epstein N. On tortuosity and the tortuosity factor in ow and diffusion through porous media. Chemical Engineering Science, 1989, 44(3): 777–779
CrossRef Google scholar
[32]
Kozeny J. Über kapillare Leitung des Wassers im Boden (Aufstieg, Versickerung und Anwendung auf die Bewässerung). Sber. Akad. Wiss. Wien, 1927, 136 (Abt. IIa): 271–306
[33]
Biot M A. Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range. Journal of the Acoustical Society of America, 1956, 28(2): 168–178
CrossRef Google scholar
[34]
Wilmanski K. Tortuosity and objective relative accelerations in the theory of porous materials. Proceedings of the Royal Society, Mathematical, Physical and Engineering Sciences, 2005, 461(2057): 1533–1561
CrossRef Google scholar
[35]
Wesselingh J A, Krishna R. Mass Transfer in Multicomponent Mixtures. Delft: Delft University Press, 2000
[36]
Ruggeri T, Simič S. Mixture of gases with multi-temperature: Maxwellian iteration. In: Ruggeri T, Sammartino M, eds. Asymptotic Methods in Nonlinear Wave Phenomena. New Jersey: World Scientific, 2007, 186–194
CrossRef Google scholar
[37]
Leşan D. On a theory of micromorphic elastic solids with microtemperatures. Journal of Thermal Stresses, 2001, 24(8): 737–752
CrossRef Google scholar
[38]
Helmig R. Multiphase Flow and Transport Processes in the Subsurface. Heidelberg: Springer, 1997
[39]
Hartge K H, Horn R. Einführung in die Bodenphysik. Stuttgart: Schweizerbart, 1999
[40]
Schick P. Ein quantitatives Zwei-Komponenten-Modell der PorenwasserBindekräfte in teilgesättigten Böden. Habilitationthesis. München: Universität der Bundeswehr, 2003
[41]
Brooks R H, Corey A T. Hydraulic properties of porous media. In: Hydrology Papers, Vol. 3. Fort Collins: Colorado State University, 1964
[42]
van Genuchten M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America, 1980, 44: 892–898
CrossRef Google scholar
[43]
Farouki O T. Ground thermal properties. In: Krzewinski T G, Tart R G, eds. Thermal Design Considerations in Frozen Ground Engineering. New York: ASCE, 1985: 186–203
[44]
Gontaszewska A. Thermophysical Properties of Soils in Vicinity of Zielona Gora in Relation to Soil Frost Depth. Dissertation for the Doctoral Degree. Poznan: University of Poznan, 2006
[45]
Chen S X. Thermal conductivity of sands. Heat and Mass Transfer, 2008, 44(10): 1241–1246
CrossRef Google scholar
[46]
Mattsson H, Hellström J G I, Lundström S. On internal erosion in embankment dams: a literature survey of the phenomenon and the prospect to model it numerically. Report No. 2008:I14, 2008

Acknowledgements

A part of this research has been carried out by one of the authors (K. Wilmanski) under the exchange program (2008/2009) between the University of Zielona Góra (Poland) and the Technical University of Graz (Austria). The collaboration with Prof. E. Bauer of TU Graz and his coworkers is greatly appreciated.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(364 KB)

Accesses

Citations

Detail

Sections
Recommended

/