Continuous modeling of soil morphology —thermomechanical behavior of embankment dams
Bettina ALBERS, Krzysztof WILMANSKI
Continuous modeling of soil morphology —thermomechanical behavior of embankment dams
Macroscopic modeling of soils is based on a number of properties that refer to the mesoscopic morphology. The most fundamental parameters of this art are: 1) coupling parameters between partial stresses of components and deformations of components, 2) porosities, 3) saturation, and 4) permeability and diffusivity, tortuosity.
The main aim of this paper is to present in juxtaposition continuous one-, two-, and three-component models of geomaterials appearing in construction of embankment dams. In particular, the above mentioned features, especially saturation with water and seepage problems, modeling of fluidization yielding piping, and generalizations of the Darcy law and changes of porosity, are presented.
thermomechanical modeling / soil morphology / saturation / porosity
[1] |
Vaníček M, Vaníček I. Earth Structures in Transport, Water and Environmental Engineering (Geotechnical, Geological, and Earthquake Engineering). New York: Springer, 2008
|
[2] |
Bowen R M. Incompressible porous media models by use of the theory of mixtures. International Journal of Engineering Science, 1980, 18(9): 1129–1148
CrossRef
Google scholar
|
[3] |
Muir Wood D. Soil Behaviour and Critical State Soil Mechanics. Cambridge, UK: Cambridge University Press, 1991
|
[4] |
Muir Wood D. Geotechnical Modelling. Oxfordshire: Spon Press, 2004
|
[5] |
Lancellotta R. Geotechnical Engineering. Rotterdam: Balkema A. A., 1995
|
[6] |
Bauer E. Constitutive modeling of critical states in hypoplasticity. In: Pande, Pietruszczak, eds. Proceedings of the Fifth International Symposium on Numerical Models in Geomechanics. Rotterdam: Balkema A. A., 1995, 1520
|
[7] |
von Wolffersdorff P A. A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-frictional Materials, 1996, 1(3): 251–271
CrossRef
Google scholar
|
[8] |
Kolymbas D. A ratedependent constitutive equation for soils. Mechanics Research Communications, 1977, 4(6): 367–372
CrossRef
Google scholar
|
[9] |
Kolymbas D. Introduction to Hypoplasticity. Rotterdam: A. A. Balkema, 2000
|
[10] |
Bauer E, Tantono S F, Zhu Y, Liu S, Kast K. Modeling rheological properties of materials for rockfill dams. In: Zhu Y
|
[11] |
Goodman M A, Cowin S C. A continuum theory for granular materials. Archive for Rational Mechanics and Analysis, 1972, 44(4): 249–266
CrossRef
Google scholar
|
[12] |
Wang Y, Hutter K. A constitutive model of multiphase mixtures and its applications in shearing flows of saturated solid-fluid mixtures. Granular Matter, 1999, 1(4): 163–181
CrossRef
Google scholar
|
[13] |
Wang Y, Hutter K. Shearing flows in a Goodman-Cowin type granular material-theory and numerical results. Particulate Science and Technology, 1999, 17(1-2): 97–124
CrossRef
Google scholar
|
[14] |
Kirchner N. Thermodynamics of Structured Granular Materials. Dissertation for the Doctoral Degree. Berichte aus der Thermodynamik. Aachen: Shaker Verlag, 2001
|
[15] |
Darcy H. Les Fontaines Publiques de la Ville de Dijon. Paris: Dalmont, 1856
|
[16] |
von Terzaghi K. Erdbaumechanik auf bodenphysikalischer Grundlage. Leipzig: Deuticke, 1925
|
[17] |
Bear J. Dynamics of Fluids in Porous Media. Dover: Dover Publication, 1972
|
[18] |
Forchheimer P. Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing., 1901, 45: 1782–1788
|
[19] |
Wilhelm T, Wilmanski K. On the onset of flow instabilities in granular media due to porosity inhomogeneities. International Journal of Multiphase Flow, 2002, 28(12): 1929–1944
CrossRef
Google scholar
|
[20] |
Wilmanski K. A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials. Soil Dynamics and Earthquake Engineering, 2006, 26(6-7): 509–536
CrossRef
Google scholar
|
[21] |
F. Gassmann; Über die Elastizität poröser Medien. In: Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 96. 1951, 1: 1–23
|
[22] |
Bowen R M. Compressible porous media models by use of the theory of mixtures. International Journal of Engineering Science, 1982, 20(6): 697–735
CrossRef
Google scholar
|
[23] |
Passman S L, Nunziato J W, Walsh E K. A theory of multiphase mixtures. In: Truesdell C, ed. Rational Thermodynamics, Berlin: Springer, 1984
|
[24] |
Faria S H, Hutter K, Kirchner N, Wang Y. Continuum Description of Granular Materials. Heidelberg: Springer, 2009
|
[25] |
Wilmanski K. A Thermodynamic model of compressible porous materials with the balance equation of porosity. Transport in Porous Media, 1998, 32(1): 21–47
CrossRef
Google scholar
|
[26] |
Wilmanski K. Thermomechanics of Continua. Heidelberg: Springer, 1998
|
[27] |
Wilmanski K. Continuum Thermodynamics. Part I: Foundations. Singapore: World Scientific, 2008
CrossRef
Google scholar
|
[28] |
Albers B. Modeling and Numerical Analysis of Wave Propagation in Saturated and Partially Saturated Porous Media. Aachen: Shaker Verlag, 2009
|
[29] |
Wilmanski K. On microstructural tests for poroelastic materials and corresponding Gassmanntype relations. Geotechnique, 2004, 54(9): 593–603
|
[30] |
Biot M A, Willis D G. The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 1957, 24: 594–601
|
[31] |
Epstein N. On tortuosity and the tortuosity factor in ow and diffusion through porous media. Chemical Engineering Science, 1989, 44(3): 777–779
CrossRef
Google scholar
|
[32] |
Kozeny J. Über kapillare Leitung des Wassers im Boden (Aufstieg, Versickerung und Anwendung auf die Bewässerung). Sber. Akad. Wiss. Wien, 1927, 136 (Abt. IIa): 271–306
|
[33] |
Biot M A. Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range. Journal of the Acoustical Society of America, 1956, 28(2): 168–178
CrossRef
Google scholar
|
[34] |
Wilmanski K. Tortuosity and objective relative accelerations in the theory of porous materials. Proceedings of the Royal Society, Mathematical, Physical and Engineering Sciences, 2005, 461(2057): 1533–1561
CrossRef
Google scholar
|
[35] |
Wesselingh J A, Krishna R. Mass Transfer in Multicomponent Mixtures. Delft: Delft University Press, 2000
|
[36] |
Ruggeri T, Simič S. Mixture of gases with multi-temperature: Maxwellian iteration. In: Ruggeri T, Sammartino M, eds. Asymptotic Methods in Nonlinear Wave Phenomena. New Jersey: World Scientific, 2007, 186–194
CrossRef
Google scholar
|
[37] |
Leşan D. On a theory of micromorphic elastic solids with microtemperatures. Journal of Thermal Stresses, 2001, 24(8): 737–752
CrossRef
Google scholar
|
[38] |
Helmig R. Multiphase Flow and Transport Processes in the Subsurface. Heidelberg: Springer, 1997
|
[39] |
Hartge K H, Horn R. Einführung in die Bodenphysik. Stuttgart: Schweizerbart, 1999
|
[40] |
Schick P. Ein quantitatives Zwei-Komponenten-Modell der PorenwasserBindekräfte in teilgesättigten Böden. Habilitationthesis. München: Universität der Bundeswehr, 2003
|
[41] |
Brooks R H, Corey A T. Hydraulic properties of porous media. In: Hydrology Papers, Vol. 3. Fort Collins: Colorado State University, 1964
|
[42] |
van Genuchten M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America, 1980, 44: 892–898
CrossRef
Google scholar
|
[43] |
Farouki O T. Ground thermal properties. In: Krzewinski T G, Tart R G, eds. Thermal Design Considerations in Frozen Ground Engineering. New York: ASCE, 1985: 186–203
|
[44] |
Gontaszewska A. Thermophysical Properties of Soils in Vicinity of Zielona Gora in Relation to Soil Frost Depth. Dissertation for the Doctoral Degree. Poznan: University of Poznan, 2006
|
[45] |
Chen S X. Thermal conductivity of sands. Heat and Mass Transfer, 2008, 44(10): 1241–1246
CrossRef
Google scholar
|
[46] |
Mattsson H, Hellström J G I, Lundström S. On internal erosion in embankment dams: a literature survey of the phenomenon and the prospect to model it numerically. Report No. 2008:I14, 2008
|
/
〈 | 〉 |