An outliers-free isogeometric modeling method of rotating disk-shaft systems under elastic boundary conditions
Xi KUANG , Zhansheng LIU , Cosmin ANITESCU , Timon RABCZUK
Front. Struct. Civ. Eng. ›› 2024, Vol. 18 ›› Issue (12) : 1908 -1921.
An outliers-free isogeometric modeling method of rotating disk-shaft systems under elastic boundary conditions
An outliers-free isogeometric modeling method for rotating disk-shaft systems is developed. The Timoshenko beam theory and artificial spring technique are employed for the rotating shaft and elastic boundary conditions. The nonlinear parameterization method is employed for the removal of outliers and three different nonlinear mappings are developed for the discussion of the accuracy of low modes. The energy coupling method between disks and shaft under nonlinear mapping is performed by using the Newton Raphson method. The results show that the isoparametric mapping has better performance in the accuracy of low modes than other nonlinear mapping and the outliers can also be removed, besides, the present method has good convergence rate for different boundary conditions. The accuracy of the proposed method shows good consistency with the Finite Element Method. The time cost of modeling is reduced by 71.4% compared to the traditional rotor model for a multiple disks rotor system, which indicates that the present approach has potential to provide more efficient optimization models of disk-shaft systems. The proposed method can provide a new modeling framework and can be easily extended to the prediction and optimization of vibration characteristics of complex rotor systems with multiple disks and supports.
isogeometric analysis / outliers-free / non-linear mapping / disk-shaft coupling / rotor systems
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
Higher Education Press
/
| 〈 |
|
〉 |