An isogeometric approach to static and transient analysis of fluid-infiltrated porous metal foam piezoelectric nanoplates with flexoelectric effects and variable nonlocal parameters

Quoc-Hoa PHAM, Van Ke Tran, Phu-Cuong Nguyen

PDF(23263 KB)
PDF(23263 KB)
Front. Struct. Civ. Eng. ›› 2024, Vol. 18 ›› Issue (3) : 461-489. DOI: 10.1007/s11709-024-1061-7
RESEARCH ARTICLE

An isogeometric approach to static and transient analysis of fluid-infiltrated porous metal foam piezoelectric nanoplates with flexoelectric effects and variable nonlocal parameters

Author information +
History +

Abstract

In this work, a novel refined higher-order shear deformation plate theory is integrated with nonlocal elasticity theory for analyzing the free vibration, bending, and transient behaviors of fluid-infiltrated porous metal foam piezoelectric nanoplates resting on Pasternak elastic foundation with flexoelectric effects. Isogeometric analysis (IGA) and the Navier solution are applied to the problem. The innovation in the present study is that the influence of the in-plane variation of the nonlocal parameter on the free and forced vibration of the piezoelectric nanoplates is investigated for the first time. The nonlocal parameter and material characteristics are assumed to be material-dependent and vary gradually over the thickness of structures. Based on Hamilton’s principle, equations of motion are built, then the IGA approach combined with the Navier solution is used to analyze the static and dynamic response of the nanoplate. Lastly, we investigate the effects of the porosity coefficients, flexoelectric parameters, elastic stiffness, thickness, and variation of the nonlocal parameters on the mechanical behaviors of the rectangular and elliptical piezoelectric nanoplates.

Graphical abstract

Keywords

isogeometric analysis / fluid-infiltrated porous / piezoelectric nanoplates / static and transient analysis / flexoelectric effect / variable nonlocal parameters

Cite this article

Download citation ▾
Quoc-Hoa PHAM, Van Ke Tran, Phu-Cuong Nguyen. An isogeometric approach to static and transient analysis of fluid-infiltrated porous metal foam piezoelectric nanoplates with flexoelectric effects and variable nonlocal parameters. Front. Struct. Civ. Eng., 2024, 18(3): 461‒489 https://doi.org/10.1007/s11709-024-1061-7

References

[1]
Nguyen T D, Mao S, Yeh Y W, Purohit P K, McAlpine M C. Nanoscale flexoelectricity. Advanced Materials, 2013, 25(7): 946–974
CrossRef Google scholar
[2]
Wang B, Gu Y, Zhang S, Chen L Q. Flexoelectricity in solids: Progress, challenges, and perspectives. Progress in Materials Science, 2019, 106: 100570
[3]
Vasquez-Sancho F, Abdollahi A, Damjanovic D, Catalan G. Flexoelectricity in Bones. Advanced Materials, 2018, 30(21): 1801413
CrossRef Google scholar
[4]
Tagantsev A K. Piezoelectricity and flexoelectricity in crystalline dielectrics. Physical Review B: Condensed Matter, 1986, 34(8): 5883–5889
CrossRef Google scholar
[5]
Yudin P V, Tagantsev A K. Fundamentals of flexoelectricity in solids. Nanotechnology, 2013, 24(43): 432001
CrossRef Google scholar
[6]
Bagheri R, Tadi B Y. On the size-dependent nonlinear dynamics of viscoelastic/flexoelectric nanobeams. Journal of Vibration and Control, 2021, 27(17−18): 2018–2033
CrossRef Google scholar
[7]
Ray M C. Benchmark solutions for the material length scale effect in flexoelectric nanobeam using a couple stress theory. Applied Mathematical Modelling, 2022, 108: 189–204
CrossRef Google scholar
[8]
Tho N C, Thanh N T, Tho T D, van Minh P, Hoa L K. Modelling of the flexoelectric effect on rotating nanobeams with geometrical imperfection. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(11): 510
CrossRef Google scholar
[9]
Yu P, Leng W, Peng L, Suo Y, Guo J. The bending and vibration responses of functionally graded piezoelectric nanobeams with dynamic flexoelectric effect. Results in Physics, 2021, 28: 104624
[10]
Ansari R, Faraji O M, Nesarhosseini S, Rouhi H. Flexoelectricity effect on the size-dependent bending of piezoelectric nanobeams resting on elastic foundation. Applied Physics. A, Materials Science & Processing, 2021, 127(7): 518
CrossRef Google scholar
[11]
BaroudiSNajarF. Modeling and vibration analysis of a nonlinear piezoelectric flexoelectric nanobeam. In: Proceedings of the International Conference Design and Modeling of Mechanical Systems. Cham: Springer International Publishing, 2021: 448–455
[12]
Baroudi S, Najar F, Jemai A. Static and dynamic analytical coupled field analysis of piezoelectric flexoelectric nanobeams: A strain gradient theory approach. International Journal of Solids and Structures, 2018, 135: 110–124
CrossRef Google scholar
[13]
Chu L, Dui G, Zheng Y. Thermally induced nonlinear dynamic analysis of temperature-dependent functionally graded flexoelectric nanobeams based on nonlocal simplified strain gradient elasticity theory. European Journal of Mechanics-A/Solids, 2020, 82: 103999
[14]
Zhao X, Zheng S, Li Z. Effects of porosity and flexoelectricity on static bending and free vibration of AFG piezoelectric nanobeams. Thin-Walled Structures, 2020, 151: 106754
[15]
Naskar S, Shingare K B, Mondal S, Mukhopadhyay T. Flexoelectricity and surface effects on coupled electromechanical responses of graphene reinforced functionally graded nanocomposites: A unified size-dependent semi-analytical framework. Mechanical Systems and Signal Processing, 2022, 169: 108757
[16]
Lan M, Yang W, Liang X, Hu S, Shen S. Vibration modes of flexoelectric circular plate. Acta Mechanica Sinica, 2022, 38(12): 422063
[17]
Duc D H, van Thom D, Cong P H, Van Minh P, Nguyen N X. Vibration and static buckling behavior of variable thickness flexoelectric nanoplates. Mechanics Based Design of Structures and Machines, 2023, 51(12): 7102–7130
[18]
Ji X. Nonlinear electromechanical analysis of axisymmetric thin circular plate based on flexoelectric theory. Scientific Reports, 2021, 11(1): 21762
CrossRef Google scholar
[19]
van Minh P, van Ke T. A comprehensive study on mechanical responses of non-uniform thickness piezoelectric nanoplates taking into account the flexoelectric effect. Arabian Journal for Science and Engineering, 2023, 48(9): 11457–11482
[20]
Thai L M, Luat D T, Phung V B, van Minh P, van Thom D. Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects. Archive of Applied Mechanics, 2022, 92(1): 163–182
CrossRef Google scholar
[21]
Qu Y L, Guo Z W, Zhang G Y, Gao X L, Jin F. A new model for circular cylindrical Kirchhoff–Love shells incorporating microstructure and flexoelectric effects. Journal of Applied Mechanics, 2022, 89(12): 121010
CrossRef Google scholar
[22]
Zhang J, Fan M, Tzou H. Flexoelectric vibration control of parabolic shells. Journal of Intelligent Material Systems and Structures, 2023, 34(8): 909–927
[23]
Fattaheian D S, Tadi B Y. Size-dependent continuum-based model of a truncated flexoelectric/flexomagnetic functionally graded conical nano/microshells. Applied Physics. A, Materials Science & Processing, 2022, 128(4): 320
CrossRef Google scholar
[24]
Fan M, Yu P, Xiao Z. An artificial neural network model for multi-flexoelectric actuation of plates. International Journal of Smart and Nano Materials, 2022, 13(4): 1–23
CrossRef Google scholar
[25]
Zhuang X, Guo H, Alajlan N, Zhu H, Rabczuk T. Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. European Journal of Mechanics. A, Solids, 2021, 87: 104225
CrossRef Google scholar
[26]
Guo H, Zheng H, Zhuang X. Numerical manifold method for vibration analysis of Kirchhoff’s plates of arbitrary geometry. Applied Mathematical Modelling, 2019, 66: 695–727
CrossRef Google scholar
[27]
Guo H, Zheng H. The linear analysis of thin shell problems using the numerical manifold method. Thin-walled Structures, 2018, 124: 366–383
CrossRef Google scholar
[28]
Nguyen V P, Anitescu C, Bordas S P A, Rabczuk T. Isogeometric analysis: An overview and computer implementation aspects. Mathematics and Computers in Simulation, 2015, 117: 89–116
CrossRef Google scholar
[29]
Jüttler B, Langer U, Mantzaflaris A, Moore S E, Zulehner W. Geometry + simulation modules: Implementing isogeometric analysis. Proceedings in Applied Mathematics and Mechanics, 2014, 14(1): 961–962
CrossRef Google scholar
[30]
Marussig B, Hughes T J R. A review of trimming in isogeometric analysis: Challenges, data exchange and simulation aspects. Archives of Computational Methods in Engineering, 2018, 25(4): 1059–1127
CrossRef Google scholar
[31]
Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39−41): 4135–4195
CrossRef Google scholar
[32]
Hughes T J R, Reali A, Sangalli G. Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering, 2008, 197(49−50): 4104–4124
CrossRef Google scholar
[33]
Ha S H, Choi K K, Cho S. Numerical method for shape optimization using T-spline based isogeometric method. Structural and Multidisciplinary Optimization, 2010, 42(3): 417–428
CrossRef Google scholar
[34]
Vu-Bac N, Duong T X, Lahmer T, Zhuang X, Sauer R A, Park H S, Rabczuk T. A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures. Computer Methods in Applied Mechanics and Engineering, 2018, 331: 427–455
CrossRef Google scholar
[35]
Bazilevs Y, Calo V M, Zhang Y, Hughes T J R. Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Computational Mechanics, 2006, 38(4−5): 310–322
CrossRef Google scholar
[36]
Auricchio F, Da Veiga L B, Hughes T J R, Reali A, Sangalli G. Isogeometric collocation methods. Mathematical Models and Methods in Applied Sciences, 2010, 20(11): 2075–2107
CrossRef Google scholar
[37]
Vu-Bac N, Duong T X, Lahmer T, Areias P, Sauer R A, Park H S, Rabczuk T. A NURBS-based inverse analysis of thermal expansion induced morphing of thin shells. Computer Methods in Applied Mechanics and Engineering, 2019, 350: 480–510
CrossRef Google scholar
[38]
Schmidt R, Kiendl J, Bletzinger K U, Wüchner R. Realization of an integrated structural design process: Analysis-suitable geometric modelling and isogeometric analysis. Computing and Visualization in Science, 2010, 13(7): 315–330
CrossRef Google scholar
[39]
BazilevsJ. Isogeometric Analysis of Turbulence and Fluid-Structure Interaction. Austin: the University of Texas at Austin, 2006
[40]
Wang Y, Wang Z, Xia Z, Poh L H. Structural design optimization using isogeometric analysis: A comprehensive review. Computer Modeling in Engineering & Sciences, 2018, 117(3): 455–507
CrossRef Google scholar
[41]
Vu-Bac N, Rabczuk T, Park H S, Fu X, Zhuang X. A NURBS-based inverse analysis of swelling induced morphing of thin stimuli-responsive polymer gels. Computer Methods in Applied Mechanics and Engineering, 2022, 397: 115049
CrossRef Google scholar
[42]
BontinckZCornoJdeGersem HKurzSPelsASchöpsSWolfFdeFalco CDölzJVázquezRRömerU. Recent advances of isogeometric analysis in computational electromagnetics. arXiv preprint arXiv:1709.06004, 2017
[43]
de Lorenzis L, Wriggers P, Hughes T J R. Isogeometric contact: A review. GAMM Mitteilungen, 2014, 37(1): 85–123
CrossRef Google scholar
[44]
Hamdia K M, Ghasemi H, Zhuang X, Rabczuk T. Multilevel monte carlo method for topology optimization of flexoelectric composites with uncertain material properties. Engineering Analysis with Boundary Elements, 2022, 134: 412–418
CrossRef Google scholar
[45]
Ghasemi H, Park H S, Alajlan N, Rabczuk T. A computational framework for design and optimization of flexoelectric materials. International Journal of Computational Methods, 2020, 17(01): 1850097
CrossRef Google scholar
[46]
Ghasemi H, Park H S, Zhuang X, Rabczuk T. Three-dimensional isogeometric analysis of flexoelectricity with MATLAB implementation. Computers, Materials & Continua, 2020, 65(2): 1157–1179
CrossRef Google scholar
[47]
HamdiaK MGhasemiHZhuangXAlajlanNRabczukT. Computational machine learning representation for the flexoelectricity effect in truncated pyramid structures. Computers, Materials & Continua, 2019: 79–87
[48]
Gao J, Xiao M, Zhang Y, Gao L. A comprehensive review of isogeometric topology optimization: Methods, applications and prospects. Chinese Journal of Mechanical Engineering, 2020, 33(1): 1–14
[49]
Hung P T, van Phung P, Chien H. A refined isogeometric plate analysis of porous metal foam microplates using modified strain gradient theory. Composite Structures, 2022, 289(1): 115467
CrossRef Google scholar
[50]
van Phung P, Ferreira A J M, Nguyen-Xuan H, Thai C H. Scale-dependent nonlocal strain gradient isogeometric analysis of metal foam nanoscale plates with various porosity distributions. Composite Structures, 2021, 268: 113949
CrossRef Google scholar
[51]
Barati M R. Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities. Advances in Nano Research, 2017, 5(4): 393–414
[52]
Cemal Eringen A. Nonlocal polar elastic continua. International Journal of Engineering Science, 1972, 10(1): 1–16
CrossRef Google scholar
[53]
Pham Q H, Nguyen P C, Tran V K, Nguyen-Thoi T. Finite element analysis for functionally graded porous nano-plates resting on elastic foundation. Steel and Composite Structures, 2021, 41(2): 149–166
[54]
Biot M A. Theory of buckling of a porous slab and its thermoelastic analogy. Journal of Applied Mechanics, 1964, 31(2): 194–198
CrossRef Google scholar
[55]
PhamQ HTranT TTranV KNguyenP CNguyen-ThoiTZenkourA M. Bending and hygro-thermo-mechanical vibration analysis of a functionally graded porous sandwich nanoshell resting on elastic foundation. Mechanics of Advanced Materials and Structures, 2022, 29(27): 5885–5905
[56]
TranV KPhamQ HNguyen-ThoiT. A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations. Engineering with Computers, 2022: 1–26
[57]
Wang B, Li X F. Flexoelectric effects on the natural frequencies for free vibration of piezoelectric nanoplates. Journal of Applied Physics, 2021, 129(3): 034102
CrossRef Google scholar
[58]
Zhang Z, Yan Z, Jiang L. Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. Journal of Applied Physics, 2014, 116(1): 014307
CrossRef Google scholar
[59]
Shu L, Wei X, Pang T, Yao X, Wang C. Symmetry of flexoelectric coefficients in crystalline medium. Journal of Applied Physics, 2011, 110(10): 104106
CrossRef Google scholar
[60]
Pham Q H, Tran V K, Nguyen P C. Hygro-thermal vibration of bidirectional functionally graded porous curved beams on variable elastic foundation using generalized finite element method. Case Studies in Thermal Engineering, 2022, 40: 102478
CrossRef Google scholar
[61]
PhamQ HNhanH TTranV KZenkourA M. Hygro-thermo-mechanical vibration analysis of functionally graded porous curved nanobeams resting on elastic foundations. Waves in Random and Complex Media, 2023, 16(2): 256978379
[62]
Dung N T, van Ke T, Huyen T T H, van Minh P. Nonlinear static bending analysis of microplates resting on imperfect two-parameter elastic foundations using modified couple stress theory. Comptes Rendus. Mécanique, 2022, 350(G1): 121–141
CrossRef Google scholar
[63]
Thai L M, Luat D T, van Ke T, van Phung M. Finite-element modeling for static bending analysis of rotating two-layer FGM beams with shear connectors resting on imperfect elastic foundations. Journal of Aerospace Engineering, 2023, 36(3): 04023013
CrossRef Google scholar
[64]
PhamQ HTranV KNguyenP C. Nonlocal strain gradient finite element procedure for hygro-thermal vibration analysis of bidirectional functionally graded porous nanobeams. Waves in Random and Complex Media, 2023, 1–32
[65]
Pham Q H, Malekzadeh P, Tran V K, Nguyen-Thoi T. Free vibration analysis of functionally graded porous curved nanobeams on elastic foundation in hygro-thermo-magnetic environment. Frontiers of Structural and Civil Engineering, 2023, 17(4): 1–22
CrossRef Google scholar
[66]
Sobhy M. A comprehensive study on FGM nanoplates embedded in an elastic medium. Composite Structures, 2015, 134: 966–980
CrossRef Google scholar
[67]
Pham Q H, Tran V K, Tran T T, Zenkour A M. Nonlocal higher-order finite element modeling for vibration analysis of viscoelastic orthotropic nanoplates resting on variable viscoelastic foundation. Composite Structures, 2023, 318: 117067
CrossRef Google scholar
[68]
Tran T T, Tran V K, Pham Q H, Zenkour A M. Extended four-unknown higher-order shear deformation nonlocal theory for bending, buckling and free vibration of functionally graded porous nanoshell resting on elastic foundation. Composite Structures, 2021, 264: 113737
CrossRef Google scholar
[69]
Pham Q H, Nguyen P C, Tran V K, Nguyen-Thoi T. Isogeometric analysis for free vibration of bidirectional functionally graded plates in the fluid medium. Defence Technology, 2022, 18(8): 1311–1329
CrossRef Google scholar
[70]
Pham Q H, Nguyen P C, Tran V K, Lieu Q X, Tran T T. Modified nonlocal couple stress isogeometric approach for bending and free vibration analysis of functionally graded nanoplates. Engineering with Computers, 2023, 39(1): 993–1018
[71]
Pham Q H, Tran V K, Tran T T. Vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers under blast load. Defence Technology, 2022, 24: 148–163
CrossRef Google scholar
[72]
Newmark N M. A method of computation for structural dynamic. Journal of the Engineering Mechanics Division, 1959, 85(3): 67–94
CrossRef Google scholar
[73]
Ebrahimi F, Habibi S. Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate. Steel and Composite Structures, 2016, 20(1): 205–225
CrossRef Google scholar
[74]
Yang W, Liang X, Shen S. Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mechanica, 2015, 226(9): 3097–3110
CrossRef Google scholar
[75]
Reddy J N. Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering, 2000, 47(1−3): 663–684
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Appendix A

The coefficients of the material stiffness matrix
[A11A120A12A22000A66]=h2h2Db0dz,
[B11B120B12B22000B66]=h2h2Dbzdz,
[B11sB12s0B12sB22s000B66s]=h2h2Dbfdz;
[A¯11A¯120A¯12A¯22000A¯66]=h2h2z~Db0dz,
[F11F120F12F22000F66]=h2h2z~Dbzdz,
[F11sF12s0F12sF22s000F66s]=h2h2z~Dbfdz,
[B¯11sB¯12s0B¯12sB¯22s000B¯66s]=h2h2F~Db0dz,
[F¯11sF¯12s0F¯12sF¯22s000F¯66s]=h2h2F~Dbzdz,
[H11H120H12H22000H66]=h2h2F~Dbfdz,
[A44s00A55s]=h2h2G~2Ds0dz,
[C11C12C13D11D12D13]=h2h2Ds1dz,
where
Db0=[C11C120C12C22000C66]+e312κ33[110110000],Ds0=[C4400C55],
Dbz=z~[C11C120C12C22000C66]+(e312z~κ33+e31f14κ33)[110110000],
Dbf=F~[C11C120C12C22000C66]+(e312F~κ33+e31f14F~,zκ33e312κ33)[110110000],
Ds1=[e31f14κ33(e31f14κ33z~+f142κ33)(e31f14κ33F~+f142κ33F~,z)e31f14κ33F~,z(e31f14κ33z~+f142κ33)F~,z(e31f14κ33F~+f142κ33F~,z)F~,z].

Appendix B

1) Stiffness matrix
k11=A11θ2+A66φ2,k12=k21=θφ(A12+A66),k22=A22φ2+A66θ2,
k13=B11θ3(B12+2B66)φ2θ,k14=B11sθ3(B12s+2B66s)φ2θ,
k23=B22φ3φθ2(B12+2B66),k24=B22sφ3φθ2(B12s+2B66s),
k31=(A¯11C11)θ3(A¯12+2A¯66C11)φ2θ,
k32=(A¯22C11)φ3(A¯12+2A¯66C11)φθ2,
k33=2F12θ2φ2+4F66θ2φ2+(F22C12)φ4+(F11C12)θ4+L,
k34=2F11sθ2φ2+4F66sθ2φ2+(F22sC12)φ4+(F11sC12)θ4+L,
k41=(B¯11sD11)θ3(B¯12s+2B¯66s+D11)φ2θ,
k42=(B¯22sD11)φ3φθ2(B¯12s+2B¯66s+D11),
k43=2F¯11sθ2φ2+4F¯66sθ2φ2+(F¯22sD12)φ4+(F¯11sD12)θ4+L,
k44=A44sφ2+(H11D13)θ4+(H22D13)φ4+A55sθ2+4H66θ2φ2+2H12θ2β2+L,
L=(ksθ4+ksφ4+2θ2φ2ks+θ2kw+φ2kw)μ2(h/2)+(θ2+φ2)ks+kw.
2) Mass matrix coefficients mij:
m11=I0+I0μ(θ2+φ2),m12=0,m13=I1θI1μθ(θ2+φ2),
m14=J1θJ1μθ(θ2+φ2),m22=I0+I0μ(θ2+φ2),
m23=I1φI1μφ(θ2+φ2);m24=J1φJ1μφ(θ2+φ2),
m33=[I0+I2(θ2+φ2)]+[I0μ+I2μ(θ2+φ2)](θ2+φ2),
m34=[I0+J2(θ2+φ2)]+[I0μ+J2μ(θ2+φ2)](θ2+φ2),
m44=[I0+K2(θ2+φ2)]+[I0μ+K2μ(θ2+φ2)](θ2+φ2).
3) Force vectors:
Q~=Qmn[1+μ2(h/2)(θ2+φ2)].

Appendix C

BI1=[RI,x0000RI,y00RI,yRI,x00],BI2=[00RI,xx000RI,yy0002RI,xy0],
BI3=[000RI,xx000RI,yy0002RI,xy],BI4=[000RI,x000RI,y],
BI5=[00RI,xx0000RI,xx],BI6=[00RI,yy0000RI,yy],
BI7=[RI,xRI,y0000RI,xxRI,xx00RI,yyRI,yy].
NI1=[RI00000RI,x0000RI,x],NI2=[0RI0000RI,y0000RI,y],NI3=[00RI0000RI0000].

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(23263 KB)

Accesses

Citations

Detail

Sections
Recommended

/