Investigation of the first quasi-rectangular metro tunnel constructed by the 0-θ method

Peinan LI, Xue LIU, Xi JIANG, Xuehui ZHANG, Jun WU, Peixin CHEN

PDF(11497 KB)
PDF(11497 KB)
Front. Struct. Civ. Eng. ›› 2023, Vol. 17 ›› Issue (11) : 1707-1722. DOI: 10.1007/s11709-023-0991-9
RESEARCH ARTICLE

Investigation of the first quasi-rectangular metro tunnel constructed by the 0-θ method

Author information +
History +

Abstract

Quasi-rectangular shield tunneling is a cutting-edge trenchless method for constructing metro tunnels with double tubes, owing to its advantages in saving underground space and reducing ground disturbance. However, the conventional quasi-rectangular shield tunneling method is not applicable when constructing a tunnel without a center pillar, such as a scissor crossover section of a metro line. Therefore, the 0-θ tunneling method, which combines the quasi-rectangular shield and pipe jacking methods, was investigated in this study to solve the aforementioned construction challenges. This study presents a case study of the Sijiqing Station of the Hangzhou Metro Line 9 in China, in which the 0-θ method was first proposed and applied. Key techniques such as switching between two types of tunneling modes and the tunneling process control in complex construction environments were investigated. The results demonstrated that the 0-θ method can address the technical challenges presented by the post-transition line with a high curvature and a scissors crossover line. In addition, the adoption of the 0-θ method ensured that the transformation between shield tunneling and pipe jacking was safe and efficient. The ground settlement monitoring results demonstrated that the disturbance to the surrounding environment can be limited to a safe level. This case study contributes to the construction technology for a metro tunnel containing both post-transition lines with a small turning radius and a scissors crossover line. A practical construction experience and theoretical guidance were provided in this study, which are of significance for both the industry and academia.

Graphical abstract

Keywords

quasi-rectangular tunnel / 0-θ method / pipe jacking / shield tunneling / underground space

Cite this article

Download citation ▾
Peinan LI, Xue LIU, Xi JIANG, Xuehui ZHANG, Jun WU, Peixin CHEN. Investigation of the first quasi-rectangular metro tunnel constructed by the 0-θ method. Front. Struct. Civ. Eng., 2023, 17(11): 1707‒1722 https://doi.org/10.1007/s11709-023-0991-9

References

[1]
Kaliampakos D, Benardos A. Underground space development: Setting modern strategies. WIT Transactions on the Built Environment, 2008, 102: 1–10
[2]
Zhao J, Peng F, Wang T, Zhang X, Jiang B. Advances in master planning of urban underground space (UUS) in China. Tunnelling and Underground Space Technology, 2016, 55: 290–307
CrossRef Google scholar
[3]
Hunt D V L, Makana L O, Jefferson I, Rogers C D F. Liveable cities and urban underground space. Tunnelling and Underground Space Technology, 2016, 55: 8–20
CrossRef Google scholar
[4]
He C, Feng K, Fang Y. Review and prospects on constructing technologies of metro tunnels using shield tunnelling method. Journal of Southwest Jiaotong University, 2015, 50(1): 97–109
[5]
Wang J, Wang K, Zhang T, Wang S. Key aspects of a DN4000 steel pipe jacking project in China: A case study of a water pipeline in the Shanghai Huangpu River. Tunnelling and Underground Space Technology, 2018, 72: 323–332
CrossRef Google scholar
[6]
Deng Z, Liu X, Zhou X, Yang Q, Chen P, de la Fuente A, Ren L, Du L, Han Y, Xiong F, Yan R. Main engineering problems and countermeasures in ultra-long-distance rock pipe jacking project: Water pipeline case study in Chongqing. Tunnelling and Underground Space Technology, 2022, 123: 104420
CrossRef Google scholar
[7]
Zhang Z G, Fang L, Ma S K, Lv X L, Shi M Z, Lu Y H. Model test study on ground settlement caused by excavation of quasi-rectangular tunnels in soft soils. Modern Tunnelling Technology, 2020, 57(S1): 762–771
[8]
LiuXLiuZYuanYZhuY. Quasi-rectangular shield tunneling technology in the Ningbo Rail Transit Project. In: Proceedings of the 2017 fib Symposiumt. Maastricht: Springer, 2018
[9]
Zhu Y H, Zhu Y F, Huang D, Li P. Development and application of the technical system for quasi-rectangular shield tunneling. Modern Tunnelling Technology, 2016, 53(S1): 1–122
[10]
Zhang X, Chen J, Bai Y, Chen A, Huang D. Ground surface deformation induced by quasi-rectangle EPB shield tunneling. Journal of Zhejiang University (Engineering Science), 2018, 52(2): 317–324
CrossRef Google scholar
[11]
Chen A, Zhang X, Bai Y, Huang D, Huang Y. Analysis of the superimposed stress of soil layer induced by quasi rectangle EPB shield tunneling. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1813–1819
[12]
Si J, Zhu Y, Ji C, Zhou S. Measurement and analysis of vertical deformation of stratum induced by quasi-rectangular shield tunneling in soft ground. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1551–1559
[13]
Qiu B. Contrastive analysis of surface subsidence deformation law between quasi-rectangular shield and double-circular shield. Urban Geotechnical Investigation & Surveying, 2018, 168(6): 173–176
[14]
Shou K, Jiang J. A study of jacking force for a curved pipe jacking. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(4): 298–304
[15]
Ma P, Shimada H, Sasaoka T, Hamanaka A, Moses D N, Dintwe T K, Huang S. A new method for predicting the friction resistance in rectangular pipe-jacking. Tunnelling and Underground Space Technology, 2022, 123: 104338
CrossRef Google scholar
[16]
Chen P, Liu X, Deng Z, Liang N, Du L, Du H, Yang G. Study on the pipe friction resistance in long-distance rock pipe jacking engineering. Underground Space, 2022, 9: 173–185
[17]
Chen S. Research on receiving construction technology of the quasi-rectangular shield with super shallow overburden. Modern Tunnelling Technology, 2020, 57(S1): 963–968
[18]
Zhu Y F, Zhu Y H, Huang D, Yang Z. New type of single tunnel and double line tunnel for rail transit-quasi-rectangular shield tunnel. Tunnel and Rail Transit, 2019, 126(S2): 18–26
[19]
Zhang Z, Huang A, Wang C. Study on the construction scheme of quasi-rectangular metro station in soft soil area constructed by pipe jacking method. Modern Tunnelling Technology, 2018, 55(S2): 397–403
[20]
Zhang S, Cheng X, Qi L, Zhou X. Face stability analysis of large diameter shield tunnel in soft clay considering high water pressure seepage. Ocean Engineering, 2022, 253: 111283
CrossRef Google scholar
[21]
Jiang X, Zhang X, Wang S, Bai Y, Huang B. Case study of the largest concrete earth pressure balance pipe-jacking project in the world. Transportation Research Record: Journal of the Transportation Research Board, 2022, 2676(7): 92–105
CrossRef Google scholar
[22]
Zhang W, Liu X, Liu Z, Zhu Y, Huang Y, Taerwe L, De Corte W. Investigation of the pressure distributions around quasi-rectangular shield tunnels in soft soils with a sh allow overburden: A field study. Tunnelling and Underground Space Technology, 2022, 130: 104742
CrossRef Google scholar
[23]
Wu D, Zhao H, Shen H. Bending performance of the steel longitudinal joint for quasi-rectangular pipe-jacking tunnels. Journal of Pipeline Systems Engineering and Practice, 2022, 13(3): 04022026
CrossRef Google scholar
[24]
Yang Y, Liao S, Liu M, Wu D, Pan W, Li H. A new construction method for metro stations in dense urban areas in Shanghai soft ground: Open-cut shafts combined with quasi-rectangular jacking boxes. Tunnelling and Underground Space Technology, 2022, 125: 104530
CrossRef Google scholar
[25]
Zhang F, Kou X, Huang J. Application of peck formula and its modified versions in ground settlement prediction during quasi-rectangular tunnelling. Modern Tunnelling Technology, 2016, 53(S1): 195–200

Acknowledgements

This study was supported by the Social Development Project of Science and Technology Commission of Shanghai Municipality (No. 21DZ1201105), the Fundamental Research Funds for the Central Universities (No. 21D111320), and the National Natural Science Foundation of China (Grant No. 42201489).

Conflict of Interest

The authors declare that they have no conflict of interest.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(11497 KB)

Accesses

Citations

Detail

Sections
Recommended

/