A numerical framework for underground structures in layered ground under inclined P-SV waves using stiffness matrix and domain reduction methods
Yusheng YANG, Haitao YU, Yong YUAN, Dechun LU, Qiangbing HUANG
A numerical framework for underground structures in layered ground under inclined P-SV waves using stiffness matrix and domain reduction methods
A numerical framework was proposed for the seismic analysis of underground structures in layered ground under inclined P-SV waves. The free-field responses are first obtained using the stiffness matrix method based on plane-wave assumptions. Then, the domain reduction method was employed to reproduce the wavefield in the numerical model of the soil–structure system. The proposed numerical framework was verified by providing comparisons with analytical solutions for cases involving free-field responses of homogeneous ground, layered ground, and pressure-dependent heterogeneous ground, as well as for an example of a soil–structure interaction simulation. Compared with the viscous and viscous-spring boundary methods adopted in previous studies, the proposed framework exhibits the advantage of incorporating oblique incident waves in a nonlinear heterogeneous ground. Numerical results show that SV-waves are more destructive to underground structures than P-waves, and the responses of underground structures are significantly affected by the incident angles.
underground structures / seismic response / stiffness matrix method / domain reduction method / P-SV waves
[1] |
McCallen D, Petersson A, Rodgers A, Pitarka A, Miah M, Petrone F, Sjogreen B, Abrahamson N, Tang H. EQSIM—A multidisciplinary framework for fault-to-structure earthquake simulations on exascale computers part I: Computational models and workflow. Earthquake Spectra, 2021, 37(2): 707–735
CrossRef
Google scholar
|
[2] |
Bilotta E, Lanzano G, Madabhushi S P G, Silvestri F. A numerical Round Robin on tunnels under seismic actions. Acta Geotechnica, 2014, 9(4): 563–579
CrossRef
Google scholar
|
[3] |
Yuan Y, Yang Y S, Zhang S H, Yu H T, Sun J. A benchmark 1 g shaking table test of shallow segmental mini-tunnel in sand. Bulletin of Earthquake Engineering, 2020, 18(11): 5383–5412
CrossRef
Google scholar
|
[4] |
Régnier J, Bonilla L F, Bard P Y, Bertrand E, Hollender F, Kawase H, Sicilia D, Arduino P, Amorosi A, Asimaki D, Boldini D, Chen L, Chiaradonna A, DeMartin F, Ebrille M, Elgamal A, Falcone G, Foerster E, Foti S, Garini E, Gazetas G, Gélis C, Ghofrani A, Giannakou A, Gingery J R, Glinsky N, Harmon J, Hashash Y, Iai S, Jeremić B, Kramer S, Kontoe S, Kristek J, Lanzo G, Lernia A, Lopez-Caballero F, Marot M, McAllister G, Diego Mercerat E, Moczo P, Montoya-Noguera S, Musgrove M, Nieto-Ferro A, Pagliaroli A, Pisanò F, Richterova A, Sajana S, Santisi d’Avila M P, Shi J, Silvestri F, Taiebat M, Tropeano G, Verrucci L, Watanabe K. International benchmark on numerical simulations for 1D, nonlinear site response (PRENOLIN): Verification phase based on canonical cases. Bulletin of the Seismological Society of America, 2016, 106(5): 2112–2135
CrossRef
Google scholar
|
[5] |
Abell J A, Orbović N, McCallen D B, Jeremic B. Earthquake soil-structure interaction of nuclear power plants, differences in response to 3-D, 3×1-D, and 1-D excitations. Earthquake Engineering & Structural Dynamics, 2018, 47(6): 1478–1495
CrossRef
Google scholar
|
[6] |
Løkke A, Chopra A K. Direct finite element method for nonlinear earthquake analysis of concrete dams: Simplification, modeling, and practical application. Earthquake Engineering & Structural Dynamics, 2019, 48(7): 818–842
CrossRef
Google scholar
|
[7] |
Lysmer J, Kuhlemeyer R L. Finite dynamic model for infinite media. Journal of the Engineering Mechanics Division, 1969, 95(4): 859–877
CrossRef
Google scholar
|
[8] |
Zhao W S, Chen W Z, Yang D S, Tan X J, Gao H, Li C. Earthquake input mechanism for time-domain analysis of tunnels in layered ground subjected to obliquely incident P- and SV-waves. Engineering Structures, 2019, 181: 374–386
CrossRef
Google scholar
|
[9] |
Li P, Song E X. Three-dimensional numerical analysis for the longitudinal seismic response of tunnels under an asynchronous wave input. Computers and Geotechnics, 2015, 63: 229–243
CrossRef
Google scholar
|
[10] |
Huang J Q, Zhao M, Du X. Non-linear seismic responses of tunnels within normal fault ground under obliquely incident P waves. Tunnelling and Underground Space Technology, 2017, 61: 26–39
CrossRef
Google scholar
|
[11] |
Sun B B, Zhang S R, Cui W, Deng M J, Wang C. Nonlinear dynamic response and damage analysis of hydraulic arched tunnels subjected to P waves with arbitrary incoming angles. Computers and Geotechnics, 2020, 118: 103358
CrossRef
Google scholar
|
[12] |
Baffet D, Bielak J, Givoli D, Hagstrom T, Rabinovich D. Long-time stable high-order absorbing boundary conditions for elastodynamics. Computer Methods in Applied Mechanics and Engineering, 2012, 241-244: 20–37
CrossRef
Google scholar
|
[13] |
Haskell N A. The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America, 1953, 43(1): 17–34
CrossRef
Google scholar
|
[14] |
Thomson W T. Transmission of elastic waves through a stratified soil medium. Journal of Applied Physics, 1950, 21(2): 89–93
CrossRef
Google scholar
|
[15] |
Kausel E. Thin-layer method: Formulation in the time domain. International Journal for Numerical Methods in Engineering, 1994, 37(6): 927–941
CrossRef
Google scholar
|
[16] |
Kausel E, Roësset J M. Stiffness matrices for layered soils. Bulletin of the Seismological Society of America, 1981, 71(6): 1743–1761
CrossRef
Google scholar
|
[17] |
Bielak J, Loukakis K, Hisada Y, Yoshimura C. Domain reduction method for three-dimensional earthquake modeling in localized regions, part I: Theory. Bulletin of the Seismological Society of America, 2003, 93(2): 817–824
CrossRef
Google scholar
|
[18] |
Zhang W, Seylabi E E, Taciroglu E. An ABAQUS toolbox for soil-structure interaction analysis. Computers and Geotechnics, 2019, 114: 103143
CrossRef
Google scholar
|
[19] |
Zhang W, Taciroglu E. 3D time-domain nonlinear analysis of soil-structure systems subjected to obliquely incident SV waves in layered soil media. Earthquake Engineering & Structural Dynamics, 2021, 50(8): 2156–2173
CrossRef
Google scholar
|
[20] |
Semblat J F, Lenti L, Gandomzadeh A. A simple multi-directional absorbing layer method to simulate elastic wave propagation in unbounded domains. International Journal for Numerical Methods in Engineering, 2011, 85(12): 1543–1563
CrossRef
Google scholar
|
[21] |
Abaqus
|
[22] |
MazzoniSMcKennaFScottM HFenvesG L. OpenSees Command Language Manual. 2006
|
[23] |
Miao Y, He H J, Liu H B, Wang S Y. Reproducing ground response using in-situ soil dynamic parameters. Earthquake Engineering & Structural Dynamics, 2022, 51(10): 2449–2465
CrossRef
Google scholar
|
[24] |
Wang S Y, Zhuang H Y, Zhang H, He H J, Jiang W P, Yao E L, Ruan B, Wu Y X, Miao Y. Near-surface softening and healing in eastern Honshu associated with the 2011 magnitude-9 Tohoku-Oki Earthquake. Nature Communications, 2021, 12(1): 1215
CrossRef
Google scholar
|
[25] |
Elgamal A, Yang Z H, Parra E, Ragheb A. Modeling of cyclic mobility in saturated cohesionless soils. International Journal of Plasticity, 2003, 19(6): 883–905
CrossRef
Google scholar
|
[26] |
Newmark N M. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division, 1959, 85(3): 67–94
CrossRef
Google scholar
|
/
〈 | 〉 |