Theoretical study on the confine-stiffening effect and fractal cracking of square concrete filled steel tubes in tension loads

Meng ZHOU , Jiaji WANG , Jianguo NIE , Qingrui YUE

Front. Struct. Civ. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 1317 -1336.

PDF (18745KB)
Front. Struct. Civ. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 1317 -1336. DOI: 10.1007/s11709-021-0763-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Theoretical study on the confine-stiffening effect and fractal cracking of square concrete filled steel tubes in tension loads

Author information +
History +
PDF (18745KB)

Abstract

Tension stress in steel-concrete composite is widely observed in engineering design. Based on an experimental program on tension performance of three square concrete-filled tubes (SCFT), the tension theory of SCFT is proposed using a mechanics-based approach. The tension stiffening effect, the confining strengthening effect and the confining stiffening effect, observed in tests of SCFTs are included in the developed tension theory model. Subsequently, simplified constitutive models of steel and concrete are proposed for the axial tension performance of SCFT. Based on the MSC.MARC software, a special fiber beam-column element is proposed to include the confining effect of SCFTs under tension and verified. The proposed analytical theory, effective formulas, and equivalent constitutive laws are extensively verified against three available tests reported in the literature on both global level (e.g., load-displacement curves) and strain level. The experimental verification proves the accuracy of the proposed theory and formulations in simulating the performance of SCFT members under tension with the capability to accurately predict the tensile strength and stiffness enhancements and realistically simulate the fractal cracking phenomenon.

Graphical abstract

Keywords

square concrete filled tubes / confine-stiffening / confine-strengthening / fractal cracking / fracture

Cite this article

Download citation ▾
Meng ZHOU, Jiaji WANG, Jianguo NIE, Qingrui YUE. Theoretical study on the confine-stiffening effect and fractal cracking of square concrete filled steel tubes in tension loads. Front. Struct. Civ. Eng., 2021, 15(6): 1317-1336 DOI:10.1007/s11709-021-0763-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nie J G, Wang J J, Gou S K, Zhu Y Y, Fan J S. Technological development and engineering applications of novel steel-concrete composite structures. Frontiers of Structural and Civil Engineering, 2019, 13( 1): 1– 14

[2]

Shao X D, Deng L, Cao J H. Innovative steel-UHPC composite bridge girders for long-span bridges. Frontiers of Structural and Civil Engineering, 2019, 13( 4): 981– 989

[3]

EN 1994-1-1: 2004. Eurocode 4: Design of Composite Steel and Concrete Structures. Part1-1: General Rules and Rules for Buildings. Brussels: European Committee for Standardization (CEN), 2004

[4]

Leon R T, Gao Y. Resiliency of steel and composite structures. Frontiers of Structural and Civil Engineering, 2016, 10( 3): 239– 253

[5]

Deng S W, Shao X D, Zhao X D, Wang Y, Wang Y. Precast steel–UHPC lightweight composite bridge foraccelerated bridge construction. Frontiers of Structural and Civl Engieering, 2021, 15( 2): 364– 377

[6]

Zhou M, Fan J S, Tao M X, Nie J G. Experimental study on the tensile behaviour of square concrete-filled steel tubes. Journal of Constructional Steel Research, 2016, 121 : 202– 215

[7]

Li W, Han L H, Chan T M. Tensile behaviour of concrete-filled double-skin steel tubular members. Journal of Constructional Steel Research, 2014, 99 : 35– 46

[8]

Li W, Han L H, Chan T M. Numerical investigation on the performance of concrete-filled double-skin steel tubular members under tension. Thin-walled Structures, 2014, 79 : 108– 118

[9]

Silva A, Jiang Y, Macedo L, Castro J M, Monteiro R, Silvestre N. Seismic performance of composite moment-resisting frames achieved with sustainable CFST members. Frontiers of Structural and Civil Engineering, 2016, 10( 3): 312– 332

[10]

Shams M, Saadeghvaziri M A. Nonlinear response of concrete-filled steel tubular columns under axial loading. ACI Structural Journal, 1999, 96( 6): 1009– 1017

[11]

Susantha K A S, Ge H, Usami T. Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes. Engineering Structures, 2001, 23( 10): 1331– 1347

[12]

Hajjar J F, Gourley B C. Representation of concrete-filled steel tube cross-section strength. Journal of Structural Engineering, 1996, 122( 11): 1327– 1336

[13]

Inai E, Mukai A, Kai M, Tokinoya H, Fukumoto T, Mori K. Behavior of concrete-filled steel tube beam columns. Journal of Structural Engineering, 2004, 130( 2): 189– 202

[14]

Vecchio F J, Collins M P. The modified compression field theory for reinforced concrete elements subjected to shear. ACI Structural Journal, 1986, 83( 2): 219– 231

[15]

Architectural Institute of Japan (AIJ). Recommendations for design and construction of concrete filled steel tubular structures. Study on Concrete Properties Subjected Impact Loading, 2008, 12: 3– 10 (in Japanese)

[16]

ANSI/AISC 360-05. Specification for Structural Steel Buildings. Chicago: American Institute of Steel Construction (AISC), 2005

[17]

JGJ 138-2016. Code for Design of Composite Structures. Beijing: Ministry of Housing and Urban-Rural Development (MOHURD), 2016 (in Chinese)

[18]

Zhou M, Xu L Y, Tao M X, Fan J S, Hajjar J F, Nie J G. Experimental study on confining-strengthening, confining-stiffening, and fractal cracking of circular concrete filled steel tubes under axial tension. Engineering Structures, 2017, 133 : 186– 199

[19]

Xu L Y, Tao M X, Zhou M. Analytical model and design formulae of circular CFSTs under axial tension. Journal of Constructional Steel Research, 2017, 133 : 214– 230

[20]

Rabczuk T, Zi G, Gerstenberger A, Wall W A. A new crack tip element for the phantom-node method with arbitrary cohesive cracks. International Journal for Numerical Methods in Engineering, 2008, 75( 5): 577– 599

[21]

Rabczuk T, Belytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61( 13): 2316– 2343

[22]

Zhang Y M, Lackner R, Zeiml M, Mang H A. Strong discontinuity embedded approach with standard SOS formulation: Element formulation, energy-based crack-tracking strategy, and validations. Computer Methods in Applied Mechanics and Engineering, 2015, 287 : 335– 366

[23]

Zhang Y M, Zhuang X Y. Cracking elements: A self-propagating strong discontinuity embedded Approach for quasi-brittle fracture. Finite Elements in Analysis and Design, 2018, 144 : 84– 100

[24]

Zhang Y M, Zhuang X Y. Cracking elements method for dynamic brittle fracture. Theoretical and Applied Fracture Mechanics, 2019, 102 : 1– 9

[25]

Zhang Y M, Mang H A. Global cracking elements: A novel tool for Garlerkin-based approaches simulating quasi-brittle fracture. International Journal for Numerical Methods in Engineering, 2020, 121( 11): 2462– 2480

[26]

Zhang Y M, Gao Z R, Li Y Y, Zhuang X Y. On the crack opening and energy dissipation in a continuum based disconnected crack model. Finite Elements in Analysis and Design, 2020, 170 : 103333–

[27]

Zhang Y M, Huang J G, Yuan Y, Mang H A. Cracking elements method with a dissipation-based arc-length approach. Finite Elements in Analysis and Design, 2021, 195 : 103573–

[28]

Ren H L, Zhuang X Y, Anitescu C, Rabczuk T. An explicit phase field method for brittle dynamic fracture. Computers & Structures, 2019, 217 : 45– 56

[29]

Rabczuk T, Ren H L, Zhuang X Y. A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. CMC, 2019, 59( 1): 31– 55

[30]

Ren H L, Zhuang X Y, Rabczuk T. A nonlocal operator method for solving partial differential equations. Computer Methods in Applied Mechanics and Engineering, 2020, 358 : 112621–

[31]

Hognestad E. High strength bars as concrete reinforcement—Part 2: Control of cracking. Journal of the PCA Research and Development Laboratories, 1962, 4( 1): 46– 62

[32]

Xu LY, Nie X, Zhou M, Tao MX. Whole-process crack width prediction of reinforced concrete structures considering bonding deterioration. Engineering Structures, 2017, 142: 240–254

[33]

Belarbi A, Hsu T T C. Constitutive laws of concrete intension and reinforcing bars stiffened by concrete. ACI Structural Journal, 1994, 91( 4): 465– 474

[34]

Nie J G, Tao M X, Cai C S, Li S J. Deformation analysis of prestressed continuous steel-concrete composite beams. Journal of Structural Engineering, 2009, 135( 11): 1377– 1389

[35]

Tao M X, Nie J G. Fiber beam-column model considering slab spatial composite effect for nonlinear analysis of composite frame systems. Journal of Structural Engineering, 2015, 140( 1): 04013039–

[36]

Tao M X, Nie J G. Element mesh, section discretization and material hysteretic laws for fiber beam-column elements of composite structural members. Materials and Structures, 2014, 48( 8): 2521– 2544

[37]

Wang Y H, Nie J G, Cai C S. Numerical modeling on concrete structures and steel-concrete composite frames structures. Composite: Part B, 2013, 51( 1): 58– 67

[38]

Denavit M D, Hajjar J F. Nonlinear seismic analysis of circular concrete-filled steel tube members and frames. NSEL Report No. NSEL-023. 2010

[39]

Tort C, Hajjar J F. Reliability-based performance-based design of rectangular concrete-filled steel tube (SCFT) members and frames. Structural Engineering Report No. ST-07-1. 2007

[40]

Hajjar J F, Molodan A, Schiller P H. A distributed plasticity model for cyclic analysis of concrete-filled steel tube beam-columns and composite frames. Engineering Journal (New York), 1998, 20( 4−6): 398– 412

[41]

Legeron F, Paultre P, Mazars J. Damage mechanics modeling of nonlinear seismic behavior of concrete structures. Journal of Structural Engineering, 2005, 131( 6): 946– 955

[42]

Zhou M. Study on basic theory and method of steel-concrete composite tension problem. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2016 (in Chinese)

RIGHTS & PERMISSIONS

Higher Education Press 2021.

AI Summary AI Mindmap
PDF (18745KB)

4173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/