Recent development in biogeotechnology and its engineering applications
Hanjiang LAI , Shifan WU , Mingjuan CUI , Jian CHU
Front. Struct. Civ. Eng. ›› 2021, Vol. 15 ›› Issue (5) : 1073 -1096.
Recent development in biogeotechnology and its engineering applications
Microbial geotechnology or biogeotechnology is a new branch of geotechnical engineering. It involves the use of microbiology for traditional geotechnical applications. Many new innovative soil improvement methods have been developed in recent years based on this approach. A proper understanding of the various approaches and the performances of different methods can help researchers and engineers to develop the most appropriate geotechnical solutions. At present, most of the methods can be categorized into three major types, biocementation, bioclogging, and biogas desaturation. Similarities and differences of different approaches and their potential applications are reviewed. Factors affecting the different processes are also discussed. Examples of up-scaled model tests and pilot trials are presented to show the emerging applications. The challenges and problems of biogeotechnology are also discussed.
biogeotechnology / biocementation / bioclogging / biogas / strength enhancement / liquefaction mitigation / seepage control
| [1] |
|
| [2] |
National Research Council. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, D.C.: National Academies Press, 2006 |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
Martinez B C, DeJong J T. Bio-mediated soil improvement: load transfer mechanisms at the micro-and macro-scales. In: Proceedings of the US-China Workshop on Ground Improvement Technology. 2009, 242–251 |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
DeJong J, Proto C, Kuo M, Gomez M. Bacteria, biofilms, and invertebrates: The next generation of geotechnical engineers? In: Proceedings of the 2014 Geo-Congress. Atlanta: American Society of Civil Engineers, 2014, 3959–3968 |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
Chu J, Ivanov V, He J, Naeimi M, Li B, Stabnikov V. Development of microbial geotechnology in Singapore. In: Proceedings of Geo-Frontiers 2011 Advances in Geotechnical Engineering. Dallas: ASCE, 2011, 4070–4078 |
| [58] |
Chu J, Ivanov V, He J, Maeimi M, Wu S. Use of Biogeotechnologies for Soil Improvement. Ground Improvement Case Histories. Oxford: Butterworth-Heinemann, 2015, 571–589 |
| [59] |
|
| [60] |
|
| [61] |
Haouzi F Z, Courcelles B. Major applications of MICP sand treatment at multi-scale levels: A review. In: Proceedings of 71st Canadian Geotechnical Conference and 13th Joint CGS/IAH-CNC Groundwater Conference. Richmond: Canadian Geotechnical Society, 2018 |
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
Meyer F D, Bang S, Min S, Stetler L D, Bang S S. Microbiologically-induced soil stabilization: Application of Sporosarcina pasteurii for fugitive dust control. In: Proceedings of Geo-Frontiers 2011. Dallas: American Society of Civil Engineers, 2011, 4002–4011 |
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
Yang Z, Cheng X, Li M. Engineering properties of MICP-bonded sandstones used for historical masonry building restoration. In: Proceedings of Geo-Frontiers 2011. Dallas: American Society of Civil Engineers, 2011, 4031–4040 |
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
Clarà Saracho A, Haigh S K, Ehsan Jorat M. Flume study on the effects of microbial induced calcium carbonate precipitation (MICP) on the erosional behaviour of fine sand. Geotechnique, 2020: 1–15 |
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
Wu S F, Chu J, Wu C Z. Biogrouting for Seepage Control for Rock Joints. In: ISRM International Symposium—10th Asian Rock Mechanics Symposium. Singapore: International Society for Rock Mechanics and Rock Engineering, 2018 |
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
Zhong L, Islam M. A new microbial plugging process and its impact on fracture remediation. In: SPE Annual Technical Conference and Exhibition. Dallas: Society of Petroleum Engineers, 1995 |
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
Peng E X, Zhang D W. Prevention of liquefaction of saturated sand using biogas produced by Pseudomonas stutzeri. In: 2017 International Conference on Transportation Infrastructure and Materials (ICTIM 2017). Qingdao: DEStech Transactions on Materials Science and Engineering, 2017 |
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
Shanahan C, Montoya B M. Strengthening coastal sand dunes using microbial-induced calcite precipitation. In: Proceedings of the 2014 Geo-Congress. Atlanta: American Society of Civil Engineers, 2014: 1683–1692 |
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
Waldschmidt J B, Courcelles B. Influence of resting periods on the efficiency of microbially induced calcite precipitation (MICP) in non-saturated conditions. In: International Congress and Exhibition “Sustainable Civil Infrastructures”. Springer, Cham, 2019, 119–126 |
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
Li L, Li M, Ogbonnaya U, Wen K, Xu Y, Amini F. Study of a discrete randomly distributed fiber on the tensile strength improvement of microbial-induced soil stabilization. In: Geotechnical Frontiers 2017. Orlando: American Society of Civil Engineers, 2017, 12–18 |
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
Rebata-Landa V. Microbial activity in sediments: Effects on soil behavior. Dissertation for the Doctoral Degree. Atlanta: Georgia Institute of Technology, 2007 |
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
Safavizadeh S, Montoya B M, Gabr M A. Effect of Microbial Induced Calcium Carbonate Precipitation on the Performance of Ponded Coal Ash. Kentucky: Association of State Dam Safety Officials, Inc., 2017 |
| [157] |
Zhang J, Wen K, Li L. Leaching assessment of MICP-treated coal combustion products in roadways embankment. In: Eighth International Conference on Case Histories in Geotechnical Engineering (Geo-Congress 2019). Philadelphia: American Society of Civil Engineers, 2019 |
| [158] |
Chittoori B C S, Rahman T, Burbank M, Moghal A A B. Evaluating shallow mixing protocols as application methods for microbial induced calcite precipitation targeting expansive soil treatment. In: Eighth International Conference on Case Histories in Geotechnical Engineering. Philadelphia: American Society of Civil Engineers, 2019 |
| [159] |
|
| [160] |
|
| [161] |
|
| [162] |
|
| [163] |
|
| [164] |
|
| [165] |
|
| [166] |
|
| [167] |
|
| [168] |
|
| [169] |
|
| [170] |
|
| [171] |
|
| [172] |
|
| [173] |
|
| [174] |
|
| [175] |
|
| [176] |
|
| [177] |
|
| [178] |
|
| [179] |
van der Star W R L, van Wijngaarden W K, van Paassen L A, van Baalen L R, Zwieten G. Stabilization of gravel deposits using microorganisms. In: Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering. Athens: Millpress, 2011 |
| [180] |
van Paassen L A, Hemert W J, Star W R L, Zwieten G V, Baalen L V. Direct shear strength of biologically cemented gravel. In: Proceedings of GeoCongress 2012. Oakland: American Society of Civil Engineers, 2012, 968–977 |
| [181] |
|
| [182] |
|
| [183] |
|
| [184] |
Gomez M G, DeJong J T. Engineering properties of bio-cementation improved sandy soils. In: Grouting 2017. Honolulu: American Society of Civil Engineers, 2017, 23–33 |
| [185] |
|
| [186] |
|
| [187] |
|
| [188] |
|
| [189] |
Amarakoon G G N N, Kawasaki S. Factors affecting the improvement of sand properties treated with microbially-induced calcite precipitation. In: Geo-Chicago 2016. Chicago: American Society of Civil Engineers, 2016, 72–83 |
| [190] |
|
| [191] |
|
| [192] |
|
| [193] |
|
| [194] |
|
| [195] |
|
| [196] |
|
| [197] |
|
| [198] |
|
| [199] |
Tsukamoto M, Oda K. Influence of relative density on microbial carbonate precipitation and mechanical properties of sand. In: Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris: Presses des Ponts, 2013, 2613–2616 |
| [200] |
Cheng L, Shahin M A, Cord-Ruwisch R, Addis M, Hartanto T, Elms C. Soil stabilisation by microbial-induced calcite precipitation (micp): Investigation into some physical and environmental aspects. In: 7th International Congress on Environmental Geotechnics: ICEG2014. Melbourne: Engineers Australia, 2014, 1105 |
| [201] |
|
| [202] |
|
| [203] |
|
| [204] |
Gat D, Tsesarsky M, Wahanon A, Ronen Z. Ureolysis and MICP with model and native bacteria: Implications for treatment strategies. In: Proceedings of the 2014 Geo-Congress. Atlanta: American Society of Civil Engineers, 2014, 1713–1720 |
| [205] |
|
| [206] |
|
| [207] |
|
| [208] |
|
| [209] |
|
| [210] |
|
| [211] |
|
| [212] |
|
| [213] |
Inagaki Y, Tsukamoto M, Mori H, Sasaki T, Soga K, Al Qabany A, Hata T. The influence of injection conditions and soil types on soil improvement by microbial functions. In: Proceedings of Geo-Frontiers 2011. Dallas: American Society of Civil Engineers, 2011, 4021–4030 |
| [214] |
|
| [215] |
Mortensen B M, DeJong J T. Strength and stiffness of MICP treated sand subjected to various stress paths. In: Proceedings of Geo-Frontiers 2011. Dallas: American Society of Civil Engineers, 2011, 4012–4020 |
| [216] |
|
| [217] |
|
| [218] |
|
| [219] |
|
| [220] |
|
| [221] |
|
| [222] |
|
| [223] |
|
| [224] |
|
| [225] |
|
| [226] |
|
| [227] |
|
| [228] |
|
| [229] |
Velpuri N V P, Yu X, Lee H I, Chang W S. Influence factors for microbial-induced calcite precipitation in sands. In: Geo-China 2016. Shandong: American Society of Civil Engineers, 2016, 44–52 |
| [230] |
Mori D, Jyoti P, Thakur T, Masakapalli S K, Uday K V. Influence of cementing solution concentration on calcite precipitation pattern in biocementation. In: Advances in Computer Methods and Geomechanics. Singapore: Springer, 2020, 737–746 |
| [231] |
|
| [232] |
|
| [233] |
|
| [234] |
|
| [235] |
|
| [236] |
|
| [237] |
|
| [238] |
Ghasemi P, Zamani A, Montoya B. The effect of chemical concentration on the strength and erodibility of MICP treated sands. In: Eighth International Conference on Case Histories in Geotechnical Engineering. Philadelphia: American Society of Civil Engineers, 2019, 241–249 |
| [239] |
|
| [240] |
|
| [241] |
|
| [242] |
Martinez B C, Barkouki T H, DeJong J D, Ginn T R. Upscaling of microbial induced calcite precipitation in 0.5 m columns: experimental and modeling results. In: Proceedings of Geo-Frontiers 2011. Dallas: American Society of Civil Engineers, 2011: 4049–4059 |
| [243] |
|
| [244] |
Al Qabany A, Mortensen B, Martinez B, Soga K, DeJong J. Microbial carbonate precipitation: correlation of S-wave velocity with calcite precipitation. In: Proceedings of Geo-Frontiers 2011. Dallas: American Society of Civil Engineers, 2011, 3993–4001 |
| [245] |
|
| [246] |
|
| [247] |
|
| [248] |
|
| [249] |
|
| [250] |
|
| [251] |
|
| [252] |
|
| [253] |
Feng K, Montoya B M. Drained shear strength of MICP sand at varying cementation levels. In: Proceedings of the International Foundations Congress and Equipment Expo 2015. San Antonio: American Society of Civil Engineers, 2015, 2242–2251 |
| [254] |
|
| [255] |
|
| [256] |
|
| [257] |
Mujah D, Shahin M, Cheng L. Performance of biocemented sand under various environmental conditions. In: XVIII Brazilian Conference on Soil Mechanics and Geotechnical Engineering The Sustainable Future of Brazil goes through our Minas COBRAMSEG 2016. Belo Horizonte: Minas Gerais, 2016, 19–22 |
| [258] |
|
| [259] |
|
| [260] |
Cardoso R, Pedreira R, Duarte S, Monteiro G, Borges H, Flores-Colen I. Biocementation as rehabilitation technique of porous materials. In: Delgado JMPQ (ed) New Approaches to Building Pathology and Durability. Singapore: Springer Singapore, 2016, 99–120 |
| [261] |
Hata T, Tsukamoto M, Inagaki Y, Mori H, Kuwano R, Gourc J P. Evaluation of multiple soil improvement techniques based on microbial functions. In: Proceedings of Geo-Frontiers 2011. Dallas: American Society of Civil Engineers, 2011, 3945–3955 |
| [262] |
|
| [263] |
|
| [264] |
|
| [265] |
|
| [266] |
|
| [267] |
|
| [268] |
|
| [269] |
Montoya B M, DeJong J T, Boulanger R W, Wilson D W, Gerhard R, Ganchenko A, Chou J C. Liquefaction mitigation using microbial induced calcite precipitation. In: Proceedings of GeoCongress 2012. Oakland: American Society of Civil Engineers, 2012, 1918–1927 |
| [270] |
Zamani A, Montoya B M. Shearing and Hydraulic Behavior of MICP Treated Silty Sand. In: Geotechnical Frontiers 2017. Orlando: American Society of Civil Engineers, 290–299 |
| [271] |
|
| [272] |
|
| [273] |
|
| [274] |
|
| [275] |
|
| [276] |
|
| [277] |
|
| [278] |
O’Donnell S T, Kavazanjian Jr E. The effect of desaturation on the static and cyclic mechanical response of dense sand. In: International Foundation Congress and Equipment Expo 2018. Orlando: American Society of Civil Engineers, 2018, 232–241 |
| [279] |
|
| [280] |
|
| [281] |
|
| [282] |
|
| [283] |
|
| [284] |
Wu S F. Mitigation of liquefaction hazards using the combined biodesaturation and bioclogging method. Dissertation for the Doctoral Degree. Iowa State University, Ames, 2015 |
| [285] |
Kavazanjian E Jr, O’Donnell S T. Mitigation of earthquake-induced liquefaction via microbial denitrification: A two-phase process. IFCEE 2015, 2286–2295 |
| [286] |
|
| [287] |
|
| [288] |
Hall C, Hernandez G, Darby K M, van Paassen L, Kavazanjian E, DeJong J, Wilson D. Centrifuge model testing of liquefaction mitigation via denitrification-induced desaturation. In: Proceedings of Geotechnical Earthquake Engineering and Soil Dynamics IV. Sacramento: American Society of Civil Engineers, 2018, 117–126 |
| [289] |
|
| [290] |
Filet A, Gadret J, Loygue M, Borel S. Biocalcis and its applications for the consolidation of sands. In: Proceedings of the Fourth International Conference on Grouting and Deep Mixing. New Orleans: American Society of Civil Engineers, 2012, 1767–1780 |
| [291] |
van Paassen L A, Harkes M P, van Zwieten G A, van der Zon W H, van der Star W R L, van Loosdrecht M C M. Scale up of BioGrout: A biological ground reinforcement method. In: Proceedings of the 17th international conference on soil mechanics and geotechnical engineering. Lansdale: IOS Press, 2009, 2328–2333 |
| [292] |
van Paassen L. Bio-mediated ground improvement: from laboratory experiment to pilot applications. In: Geo-Frontiers 2011: Advances in Geotechnical Engineering. Dallas: American Society of Civil Engineers, 2011, 4099–4108 |
| [293] |
|
| [294] |
Johnston C, Trefry M, Rayner J, Ragusa S, De Zoysa D, Davis G. In situ bioclogging for the confinement and remediation of groundwater hydrocarbon plumes. In: Proceedings of the 1999 contaminated site remediation conference. Fremantle: Centre for Groundwater Studies, 1999 |
| [295] |
|
| [296] |
|
| [297] |
Blauw M, Lambert J, Latil M N. Biosealing: A method for in situ sealing of leakages. In: Proceedings of the International Symposium on Ground Improvement Technologies and Case Histories. Singapore: Research Publishing Services, 2009 |
| [298] |
Lambert J, Novakowski K, Blauw M, Latil M, Knight L, Bayona L. Pamper bacteria, they will help us: application of biochemical mechanisms in geo-environmental engineering. In: GeoFlorida 2010: Advances in Analysis, Modeling & Design. Florida: American Society of Civil Engineers, 2010, 618–627 |
| [299] |
|
| [300] |
|
| [301] |
|
| [302] |
|
| [303] |
|
| [304] |
|
| [305] |
|
| [306] |
|
| [307] |
|
| [308] |
|
| [309] |
|
| [310] |
|
| [311] |
Kavazanjian E Jr, Almajed A, Hamdan N. Bio-inspired soil improvement using EICP soil columns and soil nails. In: Grouting 2017. Honolulu: American Society of Civil Engineers, 2017, 13–22 |
| [312] |
|
| [313] |
|
| [314] |
|
| [315] |
|
| [316] |
|
| [317] |
|
The Author(s) 2021. This article is published with open access at link.springer.com and journal.hep.com.cn.
/
| 〈 |
|
〉 |