Theoretical study of failure in composite pressure vessels subjected to low-velocity impact and internal pressure

Roham RAFIEE, Hossein RASHEDI, Shiva REZAEE

PDF(469 KB)
PDF(469 KB)
Front. Struct. Civ. Eng. ›› 2020, Vol. 14 ›› Issue (6) : 1349-1358. DOI: 10.1007/s11709-020-0650-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Theoretical study of failure in composite pressure vessels subjected to low-velocity impact and internal pressure

Author information +
History +

Abstract

A theoretical solution is aimed to be developed in this research for predicting the failure in internally pressurized composite pressure vessels exposed to low-velocity impact. Both in-plane and out-of-plane failure modes are taken into account simultaneously and thus all components of the stress and strain fields are derived. For this purpose, layer-wise theory is employed in a composite cylinder under internal pressure and low-velocity impact. Obtained stress/strain components are fed into appropriate failure criteria for investigating the occurrence of failure. In case of experiencing any in-plane failure mode, the evolution of damage is modeled using progressive damage modeling in the context of continuum damage mechanics. Namely, mechanical properties of failed ply are degraded and stress analysis is performed on the updated status of the model. In the event of delamination occurrence, the solution is terminated. The obtained results are validated with available experimental observations in open literature. It is observed that the sequence of in-plane failure and delamination varies by increasing the impact energy.

Keywords

composite pressure vessel / low-velocity impact / failure / theoretical solution / progressive damage modeling

Cite this article

Download citation ▾
Roham RAFIEE, Hossein RASHEDI, Shiva REZAEE. Theoretical study of failure in composite pressure vessels subjected to low-velocity impact and internal pressure. Front. Struct. Civ. Eng., 2020, 14(6): 1349‒1358 https://doi.org/10.1007/s11709-020-0650-3

References

[1]
Velosa J C, Nunes J P, Antunes P J, Silva J F, Marques A M. Development of a new generation of filament wound composite pressure cylinders. Composites Science and Technology, 2009, 69(9): 1348–1353
CrossRef Google scholar
[2]
ISO 11439:2000. International Standard, Gas Cylinders-High Pressure Cylinders for the on-Board Storage of Natural Gas as a Fuel for Automotive Vehicles. International Organization for Standardization,2000
[3]
EN 14427. Transportable Refillable Fully Wrapped Composite Cylinders for Liquefied Petroleum Gases (LPG). Des Construction, 2004
[4]
Alderson K L, Evans K E. Failure mechanisms during the transverse loading of filament-wound pipes under static and low velocity impact conditions. Composites, 1992, 23(3): 167–173
CrossRef Google scholar
[5]
Gning P B, Tarfaoui M, Collombet F, Riou L, Davies P. Damage development in thick composite tubes under impact loading and influence on implosion pressure: Experimental observations. Composites. Part B, Engineering, 2005, 36(4): 306–318
CrossRef Google scholar
[6]
Deniz M E, Karakuzu R, Sari M, Icten B M. On the residual compressive strength of the glass-epoxy tubes subjected to transverse impact loading. Journal of Composite Materials, 2012, 46(6): 737–745
CrossRef Google scholar
[7]
Krishnamurthy K S, Mahajan P, Mittal R K. A parametric study of the impact response and damage of laminated cylindrical composite shells. Composites Science and Technology, 2001, 61(12): 1655–1669
CrossRef Google scholar
[8]
Zhang C, Ren M, Zhao W, Chen H. Delamination prediction of composite filament wound vessel with metal liner under low velocity impact. Composite Structures, 2006, 75(1–4): 387–392
CrossRef Google scholar
[9]
Demir I, Sayman O, Dogan A, Arikan V, Arman Y. The effects of repeated transverse impact load on the burst pressure of composite pressure vessel. Composites. Part B, Engineering, 2015, 68: 121–125
CrossRef Google scholar
[10]
Han M G, Chang S H. Evaluation of structural integrity of type-III hydrogen pressure vessel under low-velocity car-to-car collision using finite element analysis. Composite Structures, 2016, 148: 198–206
CrossRef Google scholar
[11]
Gemi L. Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study. Composites. Part B, Engineering, 2018, 153: 217–232
CrossRef Google scholar
[12]
Wu Q, Chen X, Fan Z, Jiang Y, Zhang X, Nie D. Damage behavior of filament-wound composite cylinder under impact by flat-ended impactor. In: ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018
[13]
Abrate S, Ferrero J F, Navarro P. Cohesive zone models and impact damage predictions for composite structures. Meccanica, 2015, 50(10): 2587–2620
CrossRef Google scholar
[14]
Najafi F, Shojaeefard M H, Saeidi Googarchin H. Low-velocity impact response of functionally graded doubly curved panels with winkler-pasternak elastic foundation: An analytical approach. Composite Structures, 2017, 162: 351–364
CrossRef Google scholar
[15]
Khalili S M R, Ardali A. Low-velocity impact response of doubly curved symmetric cross-ply laminated panel with embedded SMA wires. Composite Structures, 2013, 105: 216–226
CrossRef Google scholar
[16]
Arachchige B, Ghasemnejad H, Augousti A T. Theoretical approach to predict transverse impact response of variable-stiffness curved composite plates. Composites. Part B, Engineering, 2016, 89: 34–43
CrossRef Google scholar
[17]
Hwang T K, Hong C S, Kim C G. Probabilistic deformation and strength prediction for a filament wound pressure vessel. Composites B. Engineering (London), 2003, 34(5): 481–497
[18]
Hwang T K, Hong C S, Kim C G. Size effect on the fiber strength of composite pressure vessels. Composite Structures, 2003, 59(4): 489–498
CrossRef Google scholar
[19]
Sun X K, Du S Y, Wang G D. Bursting problem of filament wound composite pressure vessels. International Journal of Pressure Vessels and Piping, 1999, 76(1): 55–59
CrossRef Google scholar
[20]
Onder A, Sayman O, Dogan T, Tarakcioglu N. Burst failure load of composite pressure vessels. Composite Structures, 2009, 89(1): 159–166
CrossRef Google scholar
[21]
Liu P F, Zheng J Y. Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics. Materials Science and Engineering A, 2008, 485(1–2): 711–717
CrossRef Google scholar
[22]
Xu P, Zheng J Y, Liu P F. Finite element analysis of burst pressure of composite hydrogen storage vessels. Materials & Design, 2009, 30(7): 2295–2301
CrossRef Google scholar
[23]
Wang L, Zheng C, Luo H, Wei S, Wei Z. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel. Composite Structures, 2015, 134: 475–482
CrossRef Google scholar
[24]
Leh D, Saffré P, Francescato P, Arrieux R, Villalonga S. A progressive failure analysis of a 700-bar type IV hydrogen composite pressure vessel. International Journal of Hydrogen Energy, 2015, 40(38): 13206–13214
CrossRef Google scholar
[25]
Berro Ramirez J P, Halm D, Grandidier J C, Villalonga S. A fixed directions damage model for composite materials dedicated to hyperbaric type IV hydrogen storage vessel—Part I. International Journal of Hydrogen Energy, 2015, 40(38): 13165–13173
CrossRef Google scholar
[26]
Berro Ramirez J P, Halm D, Grandidier J C, Villalonga S. A fixed directions damage model for composite materials dedicated to hyperbaric type IV hydrogen storage vessel—Part II. International Journal of Hydrogen Energy, 2015, 40(38): 13174–13182
CrossRef Google scholar
[27]
Berro Ramirez J P, Halm D, Grandidier J C, Villalonga S, Nony F. 700 bar type IV high pressure hydrogen storage vessel burst— Simulation and experimental validation. International Journal of Hydrogen Energy, 2015, 40(38): 13183–13192
CrossRef Google scholar
[28]
Gentilleau B, Villalonga S, Nony F, Galiano H. A probabilistic damage behavior law for composite material dedicated to composite pressure vessel. International Journal of Hydrogen Energy, 2015, 40(38): 13160–13164
CrossRef Google scholar
[29]
Gentilleau B, Touchard F, Grandidier J C. Numerical study of influence of temperature and matrix cracking on type IV hydrogen high pressure storage vessel behavior. Composite Structures, 2014, 111: 98–110
CrossRef Google scholar
[30]
Rafiee R, Torabi M A. Stochastic prediction of burst pressure in composite pressure vessels. Composite Structures, 2018, 185: 573–583
CrossRef Google scholar
[31]
Rafiee R, Torabi M A, Maleki S. Investigating structural failure of a filament-wound composite tube subjected to internal pressure: Experimental and theoretical evaluation. Polymer Testing, 2018, 67: 322–330
CrossRef Google scholar
[32]
Reddy J N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. New York: CRC press, 2004
[33]
Rafiee R, Ghorbanhosseini A, Rezaee Sh. Theoretical and numerical analyses of composite cylinders subjected to the low velocity impact. Composite Structures, 2019, 226: 111230
CrossRef Google scholar
[34]
Ramkumar R L, Thakar Y R. Dynamic response of curved laminated plates subjected to low velocity impact. Journal of Engineering Materials and Technology, 1987, 109(1): 67–71
CrossRef Google scholar
[35]
Gong S W, Shim V P W, Toh S L. Impact response of laminated shells with orthogonal curvatures. Composites Engineering, 1995, 5(3): 257–275
CrossRef Google scholar
[36]
Tsai S W, Hahn H T. Introduction to composite materials. Lancaster: Technomic Pub, 1980
[37]
Hashiguchi K, Yamakawa Y. Introduction to finite strain theory for continuum elasto-plasticity. New Delhi: John Wiley & Sons, 2012
[38]
Civalek O, Ulker M. HDQ-FD integrated methodology for nonlinear static and dynamic response of doubly curved shallow shells. Structural Engineering and Mechanics, 2005, 19(5): 535–550
CrossRef Google scholar
[39]
Bert C W, Malik M. Differntial quadrature method in computational mechanics: A review. Applied Mechanics Reviews, 1996, 49(1): 1–28
CrossRef Google scholar
[40]
Matemilola S A, Stronge W J. Low-speed impact damage in filament-wound CFRP composite pressure vessels. Journal of Pressure Vessel Technology, 1997, 119(4): 435–443
CrossRef Google scholar
[41]
Cheng X, li Z. Damage progressive model of compression of composite laminates after low velocity impact. Applied Mathematics and Mechanics, 2005, 26(5): 618–626
CrossRef Google scholar
[42]
Brewer J C, Lagace P A. Quadratic stress criterion for initiation of delamination. Journal of Composite Materials, 1988, 22(12): 1141–1155
CrossRef Google scholar
[43]
Donadon M V, Iannucci L, Falzon B G, Hodgkinson J M, de Almeida S F M. A progressive failure model for composite laminates subjected to low velocity impact damage. Computers & Structures, 2008, 86(11–12): 1232–1252
CrossRef Google scholar
[44]
Liu P F, Liao B B, Jia L Y, Peng X Q. Finite element analysis of dynamic progressive failure for carbon fiber composite laminates under low velocity impact. Composite Structures, 2016, 149: 408–422
CrossRef Google scholar
[45]
Pederson J. Finite element analysis of carbon fiber composite ripping using ABAQUS. Thesis for the Master’s Degree. Clemson, SC: Clemson University, 2008
[46]
Rabczuk T, Zi G, Bordas St, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455
CrossRef Google scholar
[47]
Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
CrossRef Google scholar
[48]
Rabczuk T, Belytschko T. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799
CrossRef Google scholar
[49]
Rabczuk T, Gracie R, Song J H, Belytschko T. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71
CrossRef Google scholar
[50]
Rabczuk T, Areias P M A, Belytschko T. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548
CrossRef Google scholar

“Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11709-020-0650-3 and is accessible for authorized users.”

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(469 KB)

Accesses

Citations

Detail

Sections
Recommended

/