Investigation of fatigue resistance of fillet-welded tube connection details for sign support structures
Hyungjoo CHOI, Husam NAJM
Investigation of fatigue resistance of fillet-welded tube connection details for sign support structures
Stiffened and unstiffened fillet-welded tube-to-transverse plate connection details are widely used for mast-arm and base-plate connections for highway sign structures. However, due to repetitive wind loads, cyclic fatigue stresses are induced and they are the primary source of failure in welded connections at these locations. The resistance of fatigue critical details has been an on-going research topic because of limited experimental results and the variability in existing fatigue testing results. The main objective of this study is to evaluate fatigue resistance of fillet-welded tube connection details by utilizing the advanced fatigue tool in ANSYS Workbench platform. Finite Element (FE) models development and model validation using existing test data was presented. The resulting fatigue resistance from FE analysis was expressed in terms of fatigue life, fatigue damage, and fatigue safety factor to determine the fatigue performance of fillet-welded connections. Existing fatigue test data was grouped to perform a synthetic analysis and then analysis results were provided to determine input data and fatigue limit for the fatigue module. The local stress level at fatigue critical locations was evaluated using a static FE model for different number of stiffeners and boundary conditions. The results of this investigation provides fatigue resistance of fillet-welded connection details in the form of fatigue life, fatigue damage and safety factor for various connection parameters and structural conditions.
fatigue / weld connections / base plate / fillet welds
[1] |
Hosseini M S. Parametric study of fatigue in light pole structures. Dissertation for the Doctoral Degree. Akron: University of Akron, 2013
|
[2] |
Fisher J W, Kaufmann E J, Culp J D. Fatigue cracking in highway sign anchor rods. In: Proceedings of the 9th Structures Congress. Indianapolis, IN, 1991
|
[3] |
Johns K W, Dexter R J. Fatigue Testing and Failure Analysis of Aluminum Luminaire Support Structures. Report No. 98-06. 1998
|
[4] |
Kaczinski M R, Dexter R J, Van Dien J P. Fatigue-Resistant Design of Cantilevered Signal, Sign and Light Supports. Washington D. C.: Transportation Research Board, 1998
|
[5] |
Gilani A, Whittaker A. Fatigue-life evaluation of steel post structures. II: Experimentation. Journal of Structural Engineering, 2000, 126(3): 331–340
CrossRef
Google scholar
|
[6] |
Foley C M. Fatigue Risks in the Connections of Sign Support Structures: Phase 1. Milwaukee: Wisconsin Highway Research Program, 2008
|
[7] |
New Jersey Department of Transportation (NJDOT). General Design Criteria and Standard Drawings for Overhead and Cantilever Sign Support Structures. New Jersey: NJDOT, 2007.
|
[8] |
Roy S, Park Y C, Sause R, Fisher J W, Kaufmann E J. Cost-Effective Connection Details for Highway Sign, Luminaire, and Traffic Signal Structures. Report No. NCHRP Project 10-70. 2011
|
[9] |
AASHTO. LRFD Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals. Washington D. C.: American Association of State Highway and Transportation Officials, 2015
|
[10] |
Ocel J M. Fatigue Testing of Galvanized and Ungalvanized Socket Connections. Report No. FHWA-HRT-14-066. 2014
|
[11] |
Stam A, Richman N, Pool C, Rios C, Anderson T, Frank K. Fatigue Life of Steel Base Plate to Pole Connections for Traffic Structures. Report No. FHWA/TX-11/9-1526-1, 9-1526-1. 2011
|
[12] |
Thompson R W. Evaluation of high-level lighting poles subjected to fatigue loading. Thesis for the Master’s Degree. Bethlehem: Lehigh University, 2012
|
[13] |
AASHTO. Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals. 4th ed. Washington D. C.: American Association of State Highway and Transportation Officials, 2001
|
[14] |
Macchietto C. Valmont Fatigue Testing Presentation, Presentation Given to the AASHTO T-12 Committee. Las Vegas, NV, 2002
|
[15] |
Koenigs M T, Botros T A, Freytag D, Frank K H. Fatigue Strength of Signal Mast Arm Connections. Report No. FHWA/TX-04/4178-2. 2003
|
[16] |
Azzam D M. Fatigue behavior of highway welded aluminum light pole support structures. Dissertation for the Doctoral Degree. Akron: University of Akron, 2006
|
[17] |
Roy S, Park Y C, Sause R, Fis her J W. Fatigue performance of stiffened pole-to-base plate socket connections in high-mast structures. Journal of Structural Engineering, 2012, 138(10): 1203–1213
CrossRef
Google scholar
|
[18] |
AASHTO. Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals. 5th ed. Washington D. C.: American Association of State Highway and Transportation Officials, 2009
|
[19] |
Miner M A. Cumulative damage in fatigue. Journal of Applied Mechanics, 1945, 12: 159–164
|
[20] |
Wirsching P H. Fatigue reliability for offshore structures. Journal of Structural Engineering, 1984, 110(10): 2340–2356
CrossRef
Google scholar
|
[21] |
ASTM. Standard Practice of Statistical Analysis of Linear or Linearized Stress-Life (s-n) and Strain-Life (ε-N) Fatigue Data, Annual Book of ASTM Standards, ASTM E739-91. Philadelphia: American Society of Testing and Materials, 2007
|
[22] |
Nowak A S, Collins K R. Reliability of Structures. New York: McGraw-Hill, 2000
|
[23] |
Fisher J W, Kulak G L, Smith I F. A fatigue primer for structural engineers. Chicago, IL: National Steel Bridge Alliance, American Institute of Steel Construction, 1998
|
[24] |
Schneider C R A, Maddox S J. Best Practice Guide on Statistical Analysis of Fatigue Data. Cambridge: International Institute Of Welding, 2003
|
[25] |
Puckett J A, Garlich M G, Nowak A A, Barker M. Development and Calibration of AASHTO LRFD Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals. Report No. Project 10-80. 2014
|
[26] |
Ocel J M, Dexter R J, Hajjar J F. Fatigue-Resistant Design for Overhead Signs, Mast-Arm Signal Poles, and Lighting Standards. Report No. MN/RC-2006-07. 2006
|
[27] |
Hall J H III, Connor R J. Influence of base plate flexibility on the fatigue performance of welded socket connections. Journal of Structural Engineering, 2008, 134(6): 911–918
CrossRef
Google scholar
|
/
〈 | 〉 |