A numerical study of prestressed high strength steel tubular members
Michaela GKANTOU, Marios THEOFANOUS, Charalampos BANIOTOPOULOS
A numerical study of prestressed high strength steel tubular members
The structural behavior of prestressed high strength steel (HSS) tubular members is investigated through the execution of advanced finite element modeling. Numerical models are developed and validated against published experimental data on HSS tubular members subjected to different levels of initial prestress and loaded either in tension or compression. The effect of the presence or absence of grouting on the strength and ductility of the members is also considered. To numerically replicate the structural response recorded in the tests, some key modeling features including the employed numerical solver, the adopted material models and the element types warrant careful consideration. Upon developing of the finite element models, the numerically generated ultimate loads, the corresponding failure modes and the full load-deformation curves are compared to the experimental ones, indicating a successful validation. As anticipated, prestressing enhances the load-bearing capacity for the tensile members, whereas it is detrimental for the compressive ones. A series of parametric studies is performed to assess the influence of key factors on the structural response of prestressed HSS members and the obtained results are discussed. Design guidance for tensile and compressive prestressed tubular members is also provided.
finite element / prestressing / tubular members / grout / high strength steel
[1] |
Magnel G. Prestressed steel structures. Structural Engineer, 1950, 28(11): 285–295
|
[2] |
Belenya E I. Prestressed Load-Bearing Metal Structures. Moscow: Mir Publishers, 1977
|
[3] |
Ellen P E. US Patent, 4,676,045, 1987
|
[4] |
Clarke M J, Hancock G J. Simple design procedure for the cold-formed tubular top chord of stressed-arch frames. Engineering Structures, 1994, 16(5): 377–385
CrossRef
Google scholar
|
[5] |
Clarke M J, Hancock G J. Tests and nonlinear analyses of small-scale stressed-arch frames. Journal of Structural Engineering, 1995, 121(2): 187–200
CrossRef
Google scholar
|
[6] |
Madrazo-Aguirre F, Ruiz-Teran A M, Ahmer Wadee M. Dynamic behaviour of steel-concrete composite under-deck cable-stayed bridges under the action of moving loads. Engineering Structures, 2015, 103: 260–274
CrossRef
Google scholar
|
[7] |
Belletti B, Gasperi A. Behavior of prestressed steel beams. Journal of Structural Engineering, 2010, 136(9): 1131–1139
CrossRef
Google scholar
|
[8] |
Wadee M A, Gardner L, Osofero A I. Design of prestressed stayed columns. Journal of Constructional Steel Research, 2013, 80: 287–298
CrossRef
Google scholar
|
[9] |
Han K B, Park S K. Parametric study of truss bridges by the post-tensioning method. Canadian Journal of Civil Engineering, 2005, 32(2): 420–429
CrossRef
Google scholar
|
[10] |
Lee K, Huque Z, Han S. Analysis of stabilizing process for stress-erection of Strarch frame. Engineering Structures, 2014, 59: 49–67
CrossRef
Google scholar
|
[11] |
Ellen M E, Gosaye J, Gardner L, Wadee M A. Design and construction of long-span post-tensioned tubular steel structures. Tubular structures XIV, 2012, 687–693
|
[12] |
Gosaye J, Gardner L, Wadee M A, Ellen M E. Compressive behaviour and design of prestressed steel elements. Structures, 2016, 5: 76–87
CrossRef
Google scholar
|
[13] |
Gosaye J, Gardner L, Ahmer Wadee M, Ellen M E. Tensile performance of prestressed steel elements. Engineering Structures, 2014, 79: 234–243
CrossRef
Google scholar
|
[14] |
Wang J, Afshan S, Gardner L. Axial behaviour of prestressed high strength steel tubular members. Journal of Constructional Steel Research, 2017, 133: 547–563
CrossRef
Google scholar
|
[15] |
Pt-technology. Creators of Super Powerful Structures, 2019
|
[16] |
Zhou F, Tong L, Chen Y. Experimental and numerical investigations of high strength steel welded H-section columns. International Journal of Steel Structures, 2013, 13(2): 209–218
CrossRef
Google scholar
|
[17] |
Ban H, Shi G, Shi Y, Bradford M A. Experimental investigation of the overall buckling behaviour of 960 MPa high strength steel columns. Journal of Constructional Steel Research, 2013, 88: 256–266
CrossRef
Google scholar
|
[18] |
Wang Y B, Li G Q, Chen S W, Sun F F. Experimental and numerical study on the behavior of axially compressed high strength steel box-columns. Engineering Structures, 2014, 58: 79–91
CrossRef
Google scholar
|
[19] |
Kim D K, Lee C H, Han K H, Kim J H, Lee S E, Sim H B. Strength and residual stress evaluation of stub columns fabricated from 800MPa high-strength steel. Journal of Constructional Steel Research, 2014, 102: 111–120
CrossRef
Google scholar
|
[20] |
Wang J, Afshan S, Schillo N, Theofanous M, Feldmann M, Gardner L. Material properties and compressive local buckling response of high strength steel square and rectangular hollow sections. Engineering Structures, 2017, 130: 297–315
CrossRef
Google scholar
|
[21] |
Gkantou M, Theofanous M, Antoniou N, Baniotopoulos C. Compressive behaviour of high strength steel cross-sections. Proceedings of the Institution of Civil Engineers. Structures and Buildings, 2017, 170(11): 813–824
CrossRef
Google scholar
|
[22] |
Wang J, Afshan S, Gkantou M, Theofanous M, Baniotopoulos C, Gardner L. Flexural behaviour of hot-finished high strength steel square and rectangular hollow sections. Journal of Constructional Steel Research, 2016, 121: 97–109
CrossRef
Google scholar
|
[23] |
Gkantou M, Theofanous M, Wang J, Baniotopoulos C, Gardner L. Behaviour and design of high strength steel cross-sections under combined loading. Proceedings of the Institution of Civil Engineers. Structures and Buildings, 2017, 170(11): 841–854
CrossRef
Google scholar
|
[24] |
Gkantou M, Theofanous M, Baniotopoulos C. On the structural response of high strength steel prestressed trusses. A numerical approach. In: the Proceedings of the 11th HSTAM International Congress on Mechanics. Athens, Greece, 2016, 27–30
|
[25] |
Hibbitt, Karlsson and Sorensen Inc. ABAQUS, ABAQUS/Standard User’s Manual, 2010
|
[26] |
Gardner L, Nethercot D A. Experiments on stainless steel hollow sections- Part 1: Material and cross-sectional behaviour. Journal of Constructional Steel Research, 2004, 60(9): 1291–1318
CrossRef
Google scholar
|
[27] |
Manos G C, Theofanous M, Katakalos K. Numerical simulation of the shear behaviour of reinforced concrete rectangular beam specimens with or without FRP-strip shear reinforcement. Advances in Engineering Software, 2014, 67: 47–56
CrossRef
Google scholar
|
[28] |
ACI Committee 318. Building Code Requirements for Structural Concrete and Commentary (ACI 318–99). Detroit (MI): American Concrete Institute, 1999
|
[29] |
Abdullah A B M, Rice J A, Hamilton H R, Consolazio G R. An investigation on stressing and breakage response of a prestressing strand using an efficient finite element model. Engineering Structures, 2016, 123: 213–224
CrossRef
Google scholar
|
[30] |
Okazawa S, Usami T, Noguchi H, Fujii F. Three-dimensional necking bifurcation in tensile steel specimens. Journal of Engineering Mechanics, 2002, 128(4): 479–486
CrossRef
Google scholar
|
[31] |
British Standard. EN 1993-1-1. BS EN 1993-1-1: 2005+A1:2014, Eurocode 3: Design of steel structures, Part 1-1: General rules and rules for buildings. London: BSI, 2014
|
[32] |
European Standard. EN 1994-1-1. Eurocode 4: Design of composite steel and concrete structures, Part 1-1: General rules and rules for buildings. Brussels: CEN, 2004
|
/
〈 | 〉 |