Parametric study of hexagonal castellated beams in post-tensioned self-centering steel connections
Hassan ABEDI SARVESTANI
Parametric study of hexagonal castellated beams in post-tensioned self-centering steel connections
The effects of important parameters (beam reinforcing plates, initial post-tensioning, and material properties of steel angles) on the behavior of hexagonal castellated beams in post-tensioned self-centering (PTSC) connections undergone cyclic loading up to 4% lateral drift have been investigated by finite element (FE) analysis using ABAQUS. The PTSC connection is comprised of bolted top and bottom angles as energy dissipaters and steel strands to provide self-centering capacity. The FE analysis has also been validated against the experimental test. The new formulations derived from analytical method has been proposed to predict bending moment of PTSC connections. The web-post buckling in hexagonal castellated beams has been identified as the dominant failure mode when excessive initial post-tensioning force is applied to reach greater bending moment resistance, so it is required to limit the highest initial post-tensioning force to prevent this failure. Furthermore, properties of steel material has been simulated using bilinear elastoplastic modeling with 1.5% strain-hardening which has perfectly matched with the real material of steel angles. It is recommended to avoid using steel angles with high yielding strength since they lead to the yielding of bolt shank. The necessity of reinforcing plates to prevent beam flange from local buckling has been reaffirmed.
finite element analysis / hexagonal castellated beam / parametric study / post-tensioned self-centering steel connection / steel moment-resisting frame
[1] |
Miller D K. Lessons learned from the Northridge earthquake. Engineering Structures, 1998, 20(4–6): 249–260
CrossRef
Google scholar
|
[2] |
Tremblay R, Filiatrault A. Seismic performance of steel moment resisting frames retrofitted with a locally reduced beam section connection. Canadian Journal of Civil Engineering, 1997, 24(1): 78–89
CrossRef
Google scholar
|
[3] |
Engelhardt M D, Sabol T A. Reinforcing of steel moment connections with cover plates: Benefits and limitations. Engineering Structures, 1998, 20(4–6): 510–520
CrossRef
Google scholar
|
[4] |
Uang C M, Yu Q S K, Noel S, Gross J. Cyclic testing of steel moment connections rehabilitated with RBS or welded haunch. Journal of Structural Engineering, 2000, 126(1): 57–68
CrossRef
Google scholar
|
[5] |
Ricles J M, Sause R, Garlock M M, Zhao C. Posttensioned seismic-resistant connections for steel frames. Journal of Structural Engineering, 2001, 127(2): 113–121
CrossRef
Google scholar
|
[6] |
Ricles J M, Sause R, Peng S W, Lu L W. Experimental evaluation of earthquake resistant posttensioned steel connections. Journal of Structural Engineering, 2002, 128(7): 850–859
CrossRef
Google scholar
|
[7] |
Garlock M M, Ricles J M, Sause R. Experimental studies on full-scale posttensioned steel connections. Journal of Structural Engineering, 2005, 131(3): 438–448
CrossRef
Google scholar
|
[8] |
Garlock M M, Sause R, Ricles J M. Behavior and design of posttensioned steel frame systems. Journal of Structural Engineering, 2007, 133(3): 389–399
CrossRef
Google scholar
|
[9] |
Deng K, Pan P, Lam A, Pan Z, Ye L. Test and simulation of full-scale self-centering beam-to-column connection. Earthquake Engineering and Engineering Vibration, 2013, 12(4): 599–607
CrossRef
Google scholar
|
[10] |
Moradi S, Alam M S, Milani A S. Cyclic response sensitivity of post-tensioned steel connections using sequential fractional factorial design. Journal of Constructional Steel Research, 2015, 112: 155–166
CrossRef
Google scholar
|
[11] |
Moradi S, Alam M S. Multi-criteria optimization of lateral load-drift response of posttensioned steel beam-column connections. Engineering Structures, 2017, 130: 180–197
CrossRef
Google scholar
|
[12] |
Abedi Sarvestani H. Behavior of corrugated webbed beams in post-tensioned semi-rigid connections. Advances in Structural Engineering, 2017, 20(3): 394–410
CrossRef
Google scholar
|
[13] |
Christopoulos C, Filiatrault A, Uang C M, Folz B. Posttensioned energy dissipating connections for moment-resisting steel frames. Journal of Structural Engineering, 2002, 128(9): 1111–1120
CrossRef
Google scholar
|
[14] |
Faggiano B, Esposto M, Mazzolani F. Behavioural investigation on a PTED beam-to-column connection based on numerical analyses. In: Proceedings of the 14th World Conference on Earthquake Engineering, Kanpur, India, 2008
|
[15] |
Chou C C, Tsai K C, Yang W C. Self-centering steel connections with steel bars and a discontinuous composite slab. Earthquake Engineering & Structural Dynamics, 2009, 38(4): 403–422
CrossRef
Google scholar
|
[16] |
Faggiano B, Esposto M, Mazzolani F M. PTED beam-to-column connections for seismic resistant steel frames. In: Proceedings of the 7th International Conference on Behaviour of Steel Structures in Seismic Areas. Santiago: CRC Press, 2012: 281–287
CrossRef
Google scholar
|
[17] |
Chou C C, Chen J H, Chen Y C, Tsai K C. Evaluating performance of post-tensioned steel connections with strands and reduced flange plates. Earthquake Engineering & Structural Dynamics, 2006, 35(9): 1167–1185
CrossRef
Google scholar
|
[18] |
Chou C C, Chen J H. Column restraint in post-tensioned self-centering moment frames. Earthquake Engineering & Structural Dynamics, 2010, 39(7): 751–774
CrossRef
Google scholar
|
[19] |
Vasdravellis G, Karavasilis T L, Uy B. Large-scale experimental validation of steel posttensioned connections with web hourglass pins. Journal of Structural Engineering, 2013, 139(6): 1033–1042
CrossRef
Google scholar
|
[20] |
Dimopoulos A I, Karavasilis T L, Vasdravellis G, Uy B. Seismic design, modelling and assessment of self-centering steel frames using post-tensioned connections with web hourglass shape pins. Bulletin of Earthquake Engineering, 2013, 11(5): 1797–1816
CrossRef
Google scholar
|
[21] |
Tzimas A S, Kamaris G S, Karavasilis T L, Galasso C. Collapse risk and residual drift performance of steel buildings using post-tensioned MRFs and viscous dampers in near-fault regions. Bulletin of Earthquake Engineering, 2016, 14(6): 1643–1662
CrossRef
Google scholar
|
[22] |
Zhang Y, Li Z, Zhao W, Li R, Li J. A performance study of beam column connections of self-centering steel frame with U-shaped steel dampers. Advanced Steel Construction, 2016, 12(4): 446–465
CrossRef
Google scholar
|
[23] |
Rojas P, Ricles J M, Sause R. Seismic performance of post-tensioned steel moment resisting frames with friction devices. Journal of Structural Engineering, 2005, 131(4): 529–540
CrossRef
Google scholar
|
[24] |
Tsai K C, Chou C C, Lin C L, Chen P C, Jhang S J. Seismic self-centering steel beam-to-column moment connections using bolted friction devices. Earthquake Engineering & Structural Dynamics, 2008, 37(4): 627–645
CrossRef
Google scholar
|
[25] |
Kim H J, Christopoulos C. Friction damped posttensioned self-centering steel moment-resisting frames. Journal of Structural Engineering, 2008, 134(11): 1768–1779
CrossRef
Google scholar
|
[26] |
Kim H J, Christopoulos C. Seismic design procedure and seismic response of post-tensioned self-centering steel frames. Earthquake Engineering & Structural Dynamics, 2009, 38(3): 355–376
CrossRef
Google scholar
|
[27] |
Wolski M, Ricles J M, Sause R. Experimental study of a self-centering beam–column connection with bottom flange friction device. Journal of Structural Engineering, 2009, 135(5): 479–488
CrossRef
Google scholar
|
[28] |
Iyama J, Seo C Y, Ricles J M, Sause R. Self-centering MRFs with bottom flange friction devices under earthquake loading. Journal of Constructional Steel Research, 2009, 65(2): 314–325
CrossRef
Google scholar
|
[29] |
Lin Y C, Sause R, Ricles J. Seismic performance of steel self-centering, moment-resisting frame: Hybrid simulations under design basis earthquake. Journal of Structural Engineering, 2013, 139(11): 1823–1832
CrossRef
Google scholar
|
[30] |
Guo T, Song L L, Zhang G D. Numerical simulation and seismic fragility analysis of self-centering steel MRF with web friction devices. Journal of Earthquake Engineering, 2015, 19(5): 731–751
CrossRef
Google scholar
|
[31] |
Zhang A L, Zhang Y X, Li R, Wang Z Y. Cyclic behavior of a prefabricated self-centering beam-column connection with a bolted web friction device. Engineering Structures, 2016, 111: 185–198
CrossRef
Google scholar
|
[32] |
Herning G, Garlock M E M, Vanmarcke E. Reliability based evaluation of design and performance of steel self-centering moment frames. Journal of Constructional Steel Research, 2011, 67(10): 1495–1505
CrossRef
Google scholar
|
[33] |
Abedi Sarvestani H. Cyclic behavior of hexagonal castellated beams in steel moment-resisting frames with post-tensioned connections. Struct, 2017, 11: 121–134
CrossRef
Google scholar
|
[34] |
Knowles P R. Design of Castellated Beams. London: The Steel Construction Institute, 1985
|
[35] |
Knowles P R. Castellated beams. ICE Proceedings, 1991, 90(3): 521–536
CrossRef
Google scholar
|
[36] |
Chung K F, Liu C H, Ko A C H. Steel beams with large web openings of various shapes and sizes: an empirical design method using a generalised moment-shear interaction curve. Journal of Constructional Steel Research, 2003, 59(9): 1177–1200
CrossRef
Google scholar
|
[37] |
Zaarour W, Redwood R G. Web buckling in thin webbed castellated beams. Journal of Structural Engineering, 1996, 122(8): 860–866
CrossRef
Google scholar
|
[38] |
Redwood R G, Demirdjian S. Castellated beam web buckling in shear. Journal of Structural Engineering, 1998, 124(10): 1202–1207
CrossRef
Google scholar
|
[39] |
Demirdjian S. Stability of castellated beam webs. Thesis for the Master’s Degree. Montréal: McGill University, 1999
|
[40] |
Kerdal D, Nethercot D A. Failure modes for castellated beams. Journal of Constructional Steel Research, 1984, 4(4): 295–315
CrossRef
Google scholar
|
[41] |
Zirakian T, Showkati H. Distortional buckling of castellated beams. Journal of Constructional Steel Research, 2006, 62(9): 863–871
CrossRef
Google scholar
|
[42] |
Ellobody E. Interaction of buckling modes in castellated steel beams. Journal of Constructional Steel Research, 2011, 67(5): 814–825
CrossRef
Google scholar
|
[43] |
Chung K F, Liu T C H, Ko A C H. Investigation on vierendeel mechanism in steel beams with circular web openings. Journal of Constructional Steel Research, 2001, 57(5): 467–490
CrossRef
Google scholar
|
[44] |
Gholizadeh S, Pirmoz A, Attarnejad R. Assessment of load carrying capacity of castellated steel beams by neural networks. Journal of Constructional Steel Research, 2011, 67(5): 770–779
CrossRef
Google scholar
|
[45] |
Soltani M R, Bouchaïr A, Mimoune M. Nonlinear FE analysis of the ultimate behavior of steel castellated beams. Journal of Constructional Steel Research, 2012, 70: 101–114
CrossRef
Google scholar
|
[46] |
Garlock M M, Ricles J M, Sause R. Cyclic load tests and analysis of bolted top-and-seat angle connections. Journal of Structural Engineering, 2003, 129(12): 1615–1625
CrossRef
Google scholar
|
[47] |
Garlock M M. Full-scale testing, seismic analysis, and design of post-tensioned seismic resistant connections for steel frames. Dissertation for the Doctoral Degree. Bethlehem, PA: Lehigh University, 2002
|
[48] |
AISC. Seismic Provisions for Structural Steel Buildings. Chicago, IL: American Institute of Steel Construction, 2010
CrossRef
Google scholar
|
[49] |
AISC. Specification for Structural Steel Buildings. Chicago, IL: American Institute of Steel Construction, 2010
CrossRef
Google scholar
|
[50] |
ASTM. Standard Specification for High-strength Low-alloy Columbium-vanadium Structural Steel. West Conshohocken, PA: American Society for Testing and Materials, 2016
|
[51] |
ASTM. Standard Specification for Structural Bolts, Alloy Steel, Heat treated, 150 ksi Minimum Tensile Strength. West Conshohocken, PA: American Society for Testing and Materials, 2016
|
[52] |
ASTM. Standard Specification for Steel Strand, Uncoated Seven-wire for Prestressed Concrete. West Conshohocken, PA: American Society for Testing and Materials, 2016
|
[53] |
ABAQUS 6.11-PR3. Standard User’s Manual, ABAQUS CAE manual. Providence, RI, USA: Dassault Systèmes Simulia Corp, 2010
|
[54] |
Mara T A, Tarantola S. Variance-based sensitivity indices for models with dependent inputs. Reliability Engineering & System Safety, 2012, 107: 115–121
CrossRef
Google scholar
|
[55] |
McKay M D, Conover W J, Beckmann R J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 1979, 21: 239–245
|
[56] |
Iman R L, Conover W J. A distribution-free approach to inducing rank correlation among input variables. Communications in Statistics. Simulation and Computation, 1982, 11(3): 311–334
CrossRef
Google scholar
|
[57] |
Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S. Global Sensitivity Analysis. The primer. New York: John Wiley and Sons, 2008
|
[58] |
Keitel H, Karaki G, Lahmer T, Nikulla S, Zabel V. Evaluation of coupled partial models in structural engineering using graph theory and sensitivity analysis. Engineering Structures, 2011, 33(12): 3726–3736
CrossRef
Google scholar
|
[59] |
Myers R H, Montgomery D C. Response Surface Methodology Process and Product Optimization Using Designed Experiments. 2nd ed. New York: John Wiley and Sons, 2002
|
[60] |
Montgomery D C, Runger G C. Applied Statistics and Probability for Engineers. 3rd ed. New York: John Wiley and Sons, 2003
|
[61] |
Lancaster P, Salkauskas K. An Introduction: Curve and Surface Fitting. Pittsbugh: Academic Press, 1986
|
[62] |
Vu-Bac N, Lahmer T, Keitel H, Zhao J, Zhuang X, Rabczuk T. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68: 70–84
CrossRef
Google scholar
|
[63] |
Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95
CrossRef
Google scholar
|
[64] |
Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535
CrossRef
Google scholar
|
[65] |
Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464
CrossRef
Google scholar
|
[66] |
Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
CrossRef
Google scholar
|
/
〈 | 〉 |