Scaled boundary finite element method with exact defining curves for two-dimensional linear multi-field media
Jaroon RUNGAMORNRAT, Chung Nguyen VAN
Scaled boundary finite element method with exact defining curves for two-dimensional linear multi-field media
This paper presents an efficient and accurate numerical technique based upon the scaled boundary finite element method for the analysis of two-dimensional, linear, second-order, boundary value problems with a domain completely described by a circular defining curve. The scaled boundary finite element formulation is established in a general framework allowing single-field and multi-field problems, bounded and unbounded bodies, distributed body source, and general boundary conditions to be treated in a unified fashion. The conventional polar coordinates together with a properly selected scaling center are utilized to achieve the exact description of the circular defining curve, exact geometry of the domain, and exact spatial differential operators. Standard finite element shape functions are employed in the discretization of both trial and test functions in the circumferential direction and the resulting eigenproblem is solved by a selected efficient algorithm. The computational performance of the implemented procedure is then fully investigated for various scenarios to demonstrate the accuracy in comparison with standard linear elements.
multi-field problems / defining curve / exact geometry / general boundary conditions / SBFEM
[1] |
Wolf J P. The Scaled Boundary Finite Element Method. Chichester: John Wiley & Sons, 2003
|
[2] |
Wolf J P, Song C. Finite-Element Modelling of Unbounded Domain. Chichester: John Wiley & Sons, 1996
|
[3] |
Deeks J A, Wolf J P. A virtual work derivation of the scaled boundary finite-element method for elastostatics. Computational Mechanics, 2002, 28(6): 489–504
CrossRef
Google scholar
|
[4] |
Cruse T A. Boundary Element Analysis in Computational Fracture Mechanics. Dordrecht: Kluwer Academic Publishers, 1988
|
[5] |
Brebbia C A, Dominguez J. Boundary Elements: An Introductory Course. 2nd ed. New York: McGraw-Hill, 1989
|
[6] |
Bonnet M, Maier G, Polizzotto C. Symmetric Galerkin Boundary Element Methods. Applied Mechanics Reviews, 1998, 51(11): 669–703
CrossRef
Google scholar
|
[7] |
Liu J, Lin G A. A scaled boundary finite element method applied to electrostatic problems. Engineering Analysis with Boundary Elements, 2012, 36(12): 1721–1732
CrossRef
Google scholar
|
[8] |
Li C, Man H, Song C, Gao W. Fracture analysis of piezoelectric materials using the scaled boundary finite element method. Engineering Fracture Mechanics, 2013, 97: 52–71
CrossRef
Google scholar
|
[9] |
Vu T H, Deeks A J. Using fundamental solutions in the scaled boundary finite element method to solve problems with concentrated loads. Computational Mechanics, 2014, 53(4): 641–657
CrossRef
Google scholar
|
[10] |
Ooi E T, Song C, Tin-Loi F. A scaled boundary polygon formulation for elasto-plastic analyses. Computer Methods in Applied Mechanics and Engineering, 2005, 268: 905–937
CrossRef
Google scholar
|
[11] |
Doherty J P, Deeks A J. Adaptive coupling of the finite-element and scaled boundary finite-element methods for non-linear analysis of unbounded media. Computers and Geotechnics, 2015, 32(6): 436–444
CrossRef
Google scholar
|
[12] |
Li F, Ren P. A novel solution for heat conduction problems by extending scaled boundary finite element method. International Journal of Heat and Mass Transfer, 2016, 95: 678–688
CrossRef
Google scholar
|
[13] |
Li M, Zhang H, Guan H. Study of offshore monopole behavior due to ocean waves. Ocean Engineering, 2011, 38(17–18): 1946–1956
CrossRef
Google scholar
|
[14] |
Meng X N, Zou Z J. Radiation and diffraction of water waves by an infinite horizontal structure with a sidewall using SBFEM. Ocean Engineering, 2013, 60: 193–199
CrossRef
Google scholar
|
[15] |
Gravenkamp H, Birk C, Song C. The computation of dispersion relations for axisymmetric waveguides using the scaled boundary finite element method. Ultrasonics, 2014, 54(5): 1373–1385
CrossRef
Google scholar
|
[16] |
Li C, Ooi E T, Song C, Natarajan S. SBFEM for fracture analysis of piezoelectric composites under thermal load. International Journal of Solids and Structures, 2015, 52: 114–129
CrossRef
Google scholar
|
[17] |
Song C, Wolf J P. The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics. Computer Methods in Applied Mechanics and Engineering, 1997, 147(3–4): 329–355
CrossRef
Google scholar
|
[18] |
Wolf J P, Song C. The scaled boundary finite-element method: A fundamental solution-less boundary-element method. Computer Methods in Applied Mechanics and Engineering, 2001, 190(42): 5551–5568
CrossRef
Google scholar
|
[19] |
Deeks A J. Prescribed side-face displacements in the scaled boundary finite-element method. Computers & Structures, 2004, 82(15–16): 1153–1165
CrossRef
Google scholar
|
[20] |
Song C, Wolf J P. Body loads in scaled boundary finite-element method. Computer Methods in Applied Mechanics and Engineering, 1999, 180(1–2): 117–135
CrossRef
Google scholar
|
[21] |
He Y, Yang H, Deeks A J. An element-free Galerkin (EFG) scaled boundary method. Finite Elements in Analysis and Design, 2012, 62: 28–36
CrossRef
Google scholar
|
[22] |
Vu T H, Deeks A J. Use of higher-order shape functions in the scaled boundary finite element method. International Journal for Numerical Methods in Engineering, 2006, 65(10): 1714–1733
CrossRef
Google scholar
|
[23] |
He Y, Yang H, Deeks A J. Use of Fourier shape functions in the scaled boundary method. Engineering Analysis with Boundary Elements, 2014, 41: 152–159
CrossRef
Google scholar
|
[24] |
Deeks A J, Wolf J P. An h-hierarchical adaptive procedure for the scaled boundary finite-element method. International Journal for Numerical Methods in Engineering, 2002, 54(4): 585–605
CrossRef
Google scholar
|
[25] |
Vu T H, Deeks A J. A p-adaptive scaled boundary finite element method based on maximization of the error decrease rate. Computational Mechanics, 2007, 41(3): 441–455
CrossRef
Google scholar
|
[26] |
Deeks A J, Augarde C E. A meshless local Petrov-Galerkin scaled boundary method. Computational Mechanics, 2005, 36(3): 159–170
CrossRef
Google scholar
|
[27] |
Chung N V. Analysis of two-dimensional linear field problems by scaled boundary finite element method. Dissertation for the Doctoral Degree. Bangkok: Chulalongkorn University, 2016
|
[28] |
Chung N V, Jaroon R, Phoonsak P. Scaled boundary finite element method for two-dimensional linear multi-field media. Engineering Journal (Thailand), 2017, 21(7): 334–360
|
[29] |
Ooi E T, Song C, Tin-Loi F, Yang Z J. Automatic modelling of cohesive crack propagation in concrete using polygon scaled boundary finite elements. Engineering Fracture Mechanics, 2012, 93: 13–33
CrossRef
Google scholar
|
[30] |
Ooi E T, Shi C, Song C, Tin-Loi F, Yang Z J. Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique. Engineering Fracture Mechanics, 2013, 106: 1–21
CrossRef
Google scholar
|
[31] |
Dieringer R, Becker W. A new scaled boundary finite element formulation for the computation of singularity orders at cracks and notches in arbitrarily laminated composites. Composite Structures, 2015, 123: 263–270
CrossRef
Google scholar
|
[32] |
Natarajan S, Wang J, Song C, Birk C. Isogeometric analysis enhanced by the scaled boundary finite element method. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 733–762
CrossRef
Google scholar
|
[33] |
Nguyen B H, Tran H D, Anitescu C, Zhuang X, Rabczuk T. Isogeometric symmetric Galerkin boundary element method for three-dimensional elasticity problems. Computer Methods in Applied Mechanics and Engineering, 2017, 323: 132–150
CrossRef
Google scholar
|
[34] |
Nguyen B H, Tran H D, Anitescu C, Zhuang X, Rabczuk T. An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 252–275
CrossRef
Google scholar
|
[35] |
Li P, Liu J, Lin G, Zhang P, Xu B. A combination of isogeometric technique and scaled boundary method for solution of the steady-state heat transfer problems in arbitrary plane domain with Robin boundary. Engineering Analysis with Boundary Elements, 2017, 82: 43–56
CrossRef
Google scholar
|
[36] |
Li F, Qiang T. The scaled boundary finite element analysis of seepage problems in multi-material regions. International Journal of Computational Methods, 2012, 9(1): 1240008
CrossRef
Google scholar
|
/
〈 | 〉 |