3D fracture modelling and limit state analysis of prestressed composite concrete pipes

Pengfei HE , Yang SHEN , Yun GU , Pangyong SHEN

Front. Struct. Civ. Eng. ›› 2019, Vol. 13 ›› Issue (1) : 165 -175.

PDF (3391KB)
Front. Struct. Civ. Eng. ›› 2019, Vol. 13 ›› Issue (1) : 165 -175. DOI: 10.1007/s11709-018-0484-4
RESEARCH ARTICLE
RESEARCH ARTICLE

3D fracture modelling and limit state analysis of prestressed composite concrete pipes

Author information +
History +
PDF (3391KB)

Abstract

In this manuscript, we study fracture of prestressed cylindrical concrete pipes. Such concrete pipes play a major role in tunneling and underground engineering. The structure is modelled fully in 3D using three-dimensional continuum elements for the concrete structure which beam elements are employed to model the reinforcement. This allows the method to capture important phenomena compared to a pure shell model of concrete. A continuous approach to fracture is chosen when concrete is subjected to compressive loading while a combined continuous-discrete fracture method is employed in tension. The model is validated through comparisons with experimental data.

Keywords

cylindrical concrete structures / limit state analysis / 3D fracture modelling / prestressed composite pipes / reinforced concrete / three-point bending test

Cite this article

Download citation ▾
Pengfei HE, Yang SHEN, Yun GU, Pangyong SHEN. 3D fracture modelling and limit state analysis of prestressed composite concrete pipes. Front. Struct. Civ. Eng., 2019, 13(1): 165-175 DOI:10.1007/s11709-018-0484-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bažant Z P, Pijaudier-Cabot G. Nonlocal continuum damage, localization instabilities and convergence. Journal of Engineering Mechanics, 1988, 55: 287–293

[2]

Bažant Z P. Why continuum damage is nonlocal: Micromechanics arguments. Journal of Engineering Mechanics, 1991, 117(5): 1070–1087

[3]

Bažant Z P, Jirásek M. Non-local integral formulations of plasticity and damage: survey of process. Journal of Engineering Mechanics, 2002, 128(11): 1119–1149

[4]

Chen W F. Constitutive Equations for Engineering Materials, Volume 2: Plasticity and Modeling. Amsterdam-London-New York-Tokio: Elsevier, 1994

[5]

Carol I, Bazant Z P. Damage and plasticity in microplane theory. International Journal of Solids and Structures, 1997, 34(29): 3807–3835

[6]

Han W, Reddy B D. Plasticity. Mathematical theory and numerical analysis. In: Interdisciplinary Applied Mathematics. Springer, 1999

[7]

Peerlings R H J, de Borst R, Brekelmans W A M, Geers M G D. Localisation issures in local and nonlocal continuum approaches to fracture. European Journal of Mechanics. A, Solids, 2002, 21(2): 175–189

[8]

Peerlings R H J, de Borst R, Brekelmans W A M, de Wree J H W. Gradient enhanced damage for quasi brittle materials. International Journal for Numerical Methods in Engineering, 1996, 39(19): 3391–3403

[9]

Thai T Q, Rabczuk T, Bazilevs Y, Meschke G. A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 584–604

[10]

Miehe C, Hofacker M, Welschinger F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45-48): 2765–2778

[11]

Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phasefield models of fracture: variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273–1311

[12]

Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109

[13]

Areias P, Rabczuk T, Msekh M A. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 322–350

[14]

Msekh M A, Silani M, Jamshidian M, Areias P, Zhuang X, Zi G, He P, Rabczuk T. Predictions of j integral and tensile strength of clay/epoxy nanocomposites material using phase field model. Composites. Part B, Engineering, 2016, 93: 97–114

[15]

Areias P, Rabczuk T, de Sá J C. A novel two-stage discrete crack method based on the screened poisson equation and local mesh refinement. Computational Mechanics, 2016, 58(6): 1003–1018

[16]

Areias P, Msekh M A, Rabczuk T. Damage and fracture algorithm using the screened poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143

[17]

Areias P, Reinoso J, Camanho P P, César de Sá J, Rabczuk T. Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation. Engineering Fracture Mechanics, 2018, 189: 339–360

[18]

Nguyen V P, Lian H, Rabczuk T, Bordas S. Modelling hydraulic fractures in porous media using flow cohesive interface elements. Engineering Geology, 2017, 225: 68–82

[19]

Nguyen B H, Tran H D, Anitescu C, Zhuang X, Rabczuk T. An isogeometric symmetric galerkin boundary element method for two-dimensional crack problems. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 252–275

[20]

Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150

[21]

Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620

[22]

Nanthakumar S, Lahmer T, Zhuang X, Zi G, Rabczuk T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 24(1): 153–176

[23]

Bordas S P A, Rabczuk T, Hung N X, Nguyen V P, Natarajan S, Bog T, Quan D M, Hiep N V. Strain smoothing in FEM and XFEM. Computers & Structures, 2010, 88(23–24): 1419–1443

[24]

Bordas S P A, Natarajan S, Kerfriden P, Augarde C, Mahapatra D, Rabczuk T, Pont S. On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM). International Journal for Numerical Methods in Engineering, 2011, 86(4‒5): 637–666

[25]

Ghorashi S S, Valizadeh N, Mohammadi S, Rabczuk T. T-spline based xiga for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146

[26]

Nguyen-Thanh N, Valizadeh N, Nguyen M N, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T. An extended isogeometric thin shell analysis based on kirchhoff-love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291

[27]

Chan C L, Anitescu C, Rabczuk T. Volumetric parametrization from a level set boundary representation with pht-splines. Computer Aided Design, 2017, 82: 29–41

[28]

Anitescu C, Jia Y, Zhang Y J, Rabczuk T. An isogeometric collocation method using superconvergent points. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 1073–1097

[29]

Nguyen V P, Anitescu C, Bordas S P A, Rabczuk T. Isogeometric analysis: an overview and computer implementation aspects. Mathematics and Computers in Simulation, 2015, 117: 89–116

[30]

Ghasemi H, Park H S, Rabczuk T. A level-set based IGA formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258

[31]

Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wüchner R, Bletzinger K U, Bazilevs Y, Rabczuk T. Rotation free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47‒48): 3410–3424

[32]

Nguyen-Thanh N, Nguyen-Xuan H, Bordas S P A, Rabczuk T. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Computer Methods in Applied Mechanics and Engineering, 2011, 200(21-22): 1892–1908

[33]

Nguyen B H, Tran H D, Anitescu C, Zhuang X, Rabczuk T. An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 252–275

[34]

Hansbo A, Hansbo P. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering, 2004, 193(33‒35): 3523–3540

[35]

Song J H, Areias P M A, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 2006, 67(6): 868–893

[36]

Areias P M A, Song J H, Belytschko T. Analysis of fracture in thin shells by overlapping paired elements. International Journal for Numerical Methods in Engineering, 2006, 195: 5343–5360

[37]

Chau-Dinh T, Zi G, Lee P S, Rabczuk T, Song J H. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92 93: 242–256

[38]

Hamdia K M, Silani M, Zhuang X, He P, Rabczuk T. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227

[39]

Cai Y, Zhuang X, Zhu H. A generalized and efficient method for finite cover generation in the numerical manifold method. International Journal of Computational Methods, 2013, 10(5): 1350028

[40]

Nguyen-Xuan H, Liu G R, Bordas S, Natarajan S, Rabczuk T. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 252–273

[41]

Areias P M A, Rabczuk T, Camanho P P. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63

[42]

Areias P, Rabczuk T, Dias da Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137

[43]

Areias P, Reinoso J, Camanho P, Rabczuk T. A constitutive-based element-by-element crack propagation algorithm with local mesh refinement. Computational Mechanics, 2015, 56(2): 291–315

[44]

Areias P, Rabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122

[45]

Areias P, Rabczuk T. Steiner-point free edge cutting of tetrahedral meshes with applications in fracture. Finite Elements in Analysis and Design, 2017, 132: 27–41

[46]

Amiri F, Anitescu C, Arroyo M, Bordas S, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57

[47]

Rabczuk T, Areias P M A, Belytschko T. A simplified meshfree method for shear bands with cohesive surfaces. International Journal for Numerical Methods in Engineering, 2007, 69(5): 993–1021

[48]

Rabczuk T, Zi G. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760

[49]

Zi G, Rabczuk T, Wall W. Extended meshfree methods without the branch enrichment for cohesive cracks. Computational Mechanics, 2007, 40(2): 367–382

[50]

Rabczuk T, Zi G, Gerstenberger A, Wall W A. A new crack tip element for the phantom node method with arbitrary cohesive cracks. International Journal for Numerical Methods in Engineering, 2008, 75(5): 577–599

[51]

Amiri F, Anitescu C, Arroyo M, Bordas S P A, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57

[52]

Rabczuk T, Bordas S, Zi G. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23‒24): 1391–1411

[53]

Rabczuk T, Bordas S, Zi G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495

[54]

Rabczuk T, Gracie R, Song J H, Belytschko T. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71

[55]

Rabczuk T, Areias P M A, Belytschko T. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548

[56]

Rabczuk T, Areias P. A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Computer Modeling in Engineering & Sciences, 2006, 16(2): 115–130

[57]

Bordas S, Rabczuk T, Zi G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Engineering Fracture Mechanics, 2008, 75(5): 943–960

[58]

Rabczuk T, Belytschko T, Xiao S P. Stable particle methods based on lagrangian kernels. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12‒14): 1035–1063

[59]

Talebi H, Silani M, Rabczuk T. Concurrent multiscale modelling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92

[60]

Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37‒40): 2437–2455

[61]

Budarapu P R, Gracie R, Yang S W, Zhuang X, Rabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143

[62]

Budarapu P R, Gracie R, Bordas S P A, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148

[63]

Silani M, Talebi H, Hamouda A M, Rabczuk T. Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. Journal of Computational Science, 2016, 15: 18–23

[64]

Talebi H, Silani M, Rabczuk T. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80(C): 82–92

[65]

Silani M, Talebi H, Ziaei-Rad S, Hamouda A M, Zi G, Rabczuk T. A three dimensional extended Arlequin method for dynamic fracture. Computational Materials Science, 2015, 96(PB): 425‒431

[66]

Silani M, Ziaei-Rad S, Talebi H, Rabczuk T. A semi-concurrent multiscale approach for modeling damage in nanocomposites. Theoretical and Applied Fracture Mechanics, 2014, 74(1): 30–38

[67]

Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071

[68]

Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering, 2013, 11(6): 527–541

[69]

Silling S A. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209

[70]

Rabczuk T, Ren H. A peridynamics formulation for quasi-static fracture and contact in rock. Engineering Geology, 2017, 225: 42–48

[71]

Ren H, Zhuang X, Rabczuk T. Dual-horizon peridynamics: a stable solution to varying horizons. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 762–782

[72]

Ren H, Zhuang X, Cai Y, Rabczuk T. Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 2017, 318: 768–782

[73]

Rabczuk T, Eibl J. Modelling dynamic failure of concrete with meshfree methods. International Journal of Impact Engineering, 2006, 32(11): 1878–1897

[74]

Rabczuk T, Belytschko T. Application of meshfree particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1‒4): 19–49

[75]

Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A geometrically nonlinear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758

[76]

Rabczuk T, Akkermann J, Eibl J. A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5‒6): 1327–1354

[77]

Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95

[78]

Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31

[79]

Hamdia K, Silani M, Zhuang X, He P, Rabczuk T. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (3391KB)

2513

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/