Dynamic in-plane transversal normal stresses in the concrete face of CFRD
Neftalí SARMIENTO-SOLANO, Miguel P. ROMO
Dynamic in-plane transversal normal stresses in the concrete face of CFRD
Severe earthquakes can induce damages to Concrete Face Rockfill Dams (CFRDs) such as concrete cracking and joint’s water stops distressing where high in-plane transversal normal stresses develop. Although these damages rarely jeopardize the dam safety, they cause large water reservoir leakages that hinder the dam functioning. This issue can be addressed using well know numerical methods; however, given the wide range of parameters involved, it would seem appropriate to develop a simple yet reliable procedure to get a close understanding how their interaction affects the CFRD’s overall behavior. Accordingly, once the physics of the problem is better understood one can proceed to perform a detailed design of the various components of the dam. To this end an easy-to-use procedure that accounts for the dam height effects, valley narrowness, valley slopes, width of concrete slabs and seismic excitation characteristics was developed. The procedure is the dynamic complement of a method recently developed to evaluate in-plane transversal normal stresses in the concrete face of CFRD’s due to dam reservoir filling [
CFR dams / dynamic analysis / in-plane normal stresses / concrete face
[1] |
Sarmiento N, Romo M P. In-plane transversal normal stresses in the concrete face of CFRD induced by the first-dam reservoir filling. Frontiers of Structural and Civil Engineering, 2018, 12(1): 81–91
CrossRef
Google scholar
|
[2] |
Zhang J, Yang Z, Gao X, Tong Z. Lessons from Damages to High Embankment Dams in the May 12, 2008 Wenchuan Earthquake. Soil Dynamics and Earthquake Engineering, Geotechnical Special Publication, ASCE, 2010; 201: 1–31
|
[3] |
Wieland M, Houqun C. Lessons learnt from the Wenchuan earthquake. International Water Power & Dam Construction, September 2009, p. 36–40
|
[4] |
Dakoulas P. Nonlinear seismic response of tall concrete-faced rockfill dams in narrow canyons. Soil Dynamics and Earthquake Engineering, ASCE, 2012, 34(1): 11–24
CrossRef
Google scholar
|
[5] |
Zou D, Xu B, Kong X, Liu H, Zhou Y. Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model. Computers and Geotechnics, 2013, 49: 111–122
CrossRef
Google scholar
|
[6] |
Sarmiento N, Romo M P. Efecto de la dirección de la excitación en la respuesta sísmica de la cara de concreto de presas de enrocamiento. IMTA-TC, 2013, IV(2): 91–111 (in spanish)
|
[7] |
Romo M P. Cuestiones sísmicas de nuevos tipos de presas. Memorias del coloquio conmemorativo: La Ingeniería Geotécnica a 20 años de “El sismo”. Ciudad de México, 2005, p. 159–163. (in spanish).
|
[8] |
Wieland M. Concrete Face Rockfill Dams in Highly Seismic Regions. 1st International Symposium of Rockfill Dams, Chengdu, China, October, 2009.
|
[9] |
Taylor E S. Dimensional analysis for engineers. Clarendon Press, Oxford, 1974, pp 162.
|
[10] |
Itasca Consulting Group. FLAC3D: Fast Lagrangian Analysis of Continua in 3 Dimensions. Inc., Minneapolis, Minnesota, 2005.
|
[11] |
Cundall P A, Hart R D. Numerical modeling of discontinua. Engr. Comp, 1992, 9(2): 101–113
CrossRef
Google scholar
|
[12] |
Méndez B C. Investigación experimental de la fricción dinámica en una interfaz madera sobre madera. Tesis de maestría, Universidad Nacional Autónoma de México, 2004, (in spanish)
|
[13] |
Méndez B C, Romo M P, Botero E. Linearization of rigid body dynamics on frictional interfaces under harmonic loading. Soil Dynamics and Earthquake Engineering, 2012, 32(1): 152–158
CrossRef
Google scholar
|
[14] |
Méndez B C, Botero E, Romo M P. A new friction law for sliding rigid blocks under cyclic loading. Soil Dynamics and Earthquake Engineering, 2009, 29(5): 874–882
CrossRef
Google scholar
|
[15] |
Alberro J, Macedo G and Gonzalez F. Deformabilidad in situ de los materiales constitutivos de varias presas de tierra y enrocamiento. Informe para la Comisión Federal de Electricidad, Instituto de Ingeniería, Universidad Nacional Autónoma de México. May 1998, (in spanish)
|
[16] |
Varadarajan A, Sharma K G, Venkatachalam K, Gupta A K. Testing and Modeling Two Rockfill Materials. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 206–218
CrossRef
Google scholar
|
[17] |
Fu Z, Chen S, Peng C. Modeling Cyclic Behavior of Rockfill Materials in a Framework of Generalized Plasticity. International Journal of Geomechanics, 2014, 14(2): 191–204
CrossRef
Google scholar
|
[18] |
Xiao Y, Liu H, Zhang W, Liu H, Yin F, Wang Y. Testing and modeling of rockfill materials: A review. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 415–422
CrossRef
Google scholar
|
[19] |
Honkanadavar N P, Sharma K G. Modeling the triaxial behavior of riverbed and blasted quarried rockfill materials using hardening soil model. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 350–365
CrossRef
Google scholar
|
[20] |
Chen S, Fu Z, Wei K, Han H. Seismic responses of high concrete face rockfill dams: A case study. Water Science and Engineering, 2016, 9(3): 195–204
CrossRef
Google scholar
|
[21] |
Romo M P. Performance of El Infiernillo and La Villita dams including the earthquake of March 14, 1979. Ediciones del Sector Eléctrico, 1980, No 15, CFE, Chapters 6 and 7
|
[22] |
Romo M P , Villarraga R. Theoretical model for the seismic behavior of dams: El Infiernillo. Series del Instituto de Ingeniería, UNAM, 1989, No 518 (in Spanish)
|
[23] |
Romo M P, Magaña R. Evaluation of the seismic response and safety of El Infiernillo and La Villita dams. Internal report, Instituto de Ingeniería, UNAM, 1992, (in Spanish)
|
[24] |
Romo M P. Model development from measured seismic behavior of earth-rockfill dams. Series Investigación y Desarrollo, Instituto de Ingeniería, UNAM, 2002, SID/630.
|
[25] |
Lambe T W. Predictions in soil engineering. Geotechnique, 1973, 23(2): 151–202
CrossRef
Google scholar
|
[26] |
Romo M P, Sarmiento N, Martínez S, Merlos J, García S R, Magaña R, Hernández S.Análisis Sísmico de la Cortina Propuesta por CFE para el Proyecto Hidroeléctrico El Cajón y Diseños Geotécnicos Alternos. Informe Técnico del Instituto de Ingeniería, UNAM, elaborado para la Comisión Federal de Electricidad, noviembre, 2002 (in spanish)
|
[27] |
Romo M P, Sarmiento N and Martínez S. Análisis sísmico de la cortina (enrocamiento con cara de concreto) de la presa La Parota, Informe Técnico del Instituto de Ingeniería, UNAM, elaborado para la Comisión Federal de Electricidad, 2004 (in spanish)
|
[28] |
Romo M P, Botero E, Méndez B, Hernández S, Sarmiento N. Análisis sísmico de la cortina y el vertedor del proyecto Hidroeléctrico La Yesca. Informe Técnico del Instituto de Ingeniería, UNAM, elaborado para la Comisión Federal de Electricidad, julio, 2006 (in spanish)
|
[29] |
Seed H B, Idriss I M. Soil moduli and damping factors for dynamic response analyses, Technical Report EERRC-70-10, University of California, Berkeley, 1970
|
[30] |
Romo M P. Soil-structure interaction in a random seismic environment. PhD Thesis, University of California, Berkeley, 1976
|
[31] |
Romo M P, Chen J, Lysmer J, Seed H B. PLUSH. A Computer Program for Probabilistic Finite Element Analysis of Seismic Soil-Structure Interaction. Earthquake Engineering Research Center, Report EERC-77/01, University of California, Berkeley, California, 1980
|
[32] |
Sarmiento N.Respuesta sísmica tridimensional de presas de enrocamiento con cara de concreto. Tesis doctoral, Universidad Nacional Autónoma de México, 2011, (in spanish)
|
[33] |
Vu-Bac N, Lahmer T, Keitel H, Zhao J, Zhuang X, Rabczuk T. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68: 70–84
CrossRef
Google scholar
|
[34] |
Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95
CrossRef
Google scholar
|
[35] |
Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535
CrossRef
Google scholar
|
[36] |
Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464
CrossRef
Google scholar
|
[37] |
Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
CrossRef
Google scholar
|
/
〈 | 〉 |