Application of a weakly compressible smoothed particle hydrodynamics multi-phase model to non-cohesive embankment breaching due to flow overtopping

Rasoul MEMARZADEH, Gholamabbas BARANI, Mahnaz GHAEINI-HESSAROEYEH

PDF(2479 KB)
PDF(2479 KB)
Front. Struct. Civ. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 412-424. DOI: 10.1007/s11709-017-0432-8
Research Article
Research Article

Application of a weakly compressible smoothed particle hydrodynamics multi-phase model to non-cohesive embankment breaching due to flow overtopping

Author information +
History +

Abstract

The subject of present study is the application of mesh free Lagrangian two-dimensional non-cohesive sediment transport model applied to a two-phase flow over an initially trapezoidal-shaped sediment embankment. The governing equations of the present model are the Navier-Stocks equations solved using Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) method. To simulate the movement of sediment particles, the model considers a powerful two-part technique; when the sediment phase has rigid behavior, only the force term due to shear stress in the Navier-Stokes equations is used for simulation of sediment particles’ movement. Otherwise, all the Navier-Stokes force terms are used for transport simulation of sediment particles. In the present model, the interactions between different phases are calculated automatically, even with considerable difference between the density and viscosity of phases. Validation of the model is performed using simulation of available laboratory experiments, and the comparison between computational results and experimental data shows that the model generally predicts well the flow propagation over movable beds, the induced sediment transport and bed changes, and temporal evolution of embankment breaching.

Keywords

WCSPH method / non-cohesive sediment transport / rheological model / two-part technique / two-phase dam break

Cite this article

Download citation ▾
Rasoul MEMARZADEH, Gholamabbas BARANI, Mahnaz GHAEINI-HESSAROEYEH. Application of a weakly compressible smoothed particle hydrodynamics multi-phase model to non-cohesive embankment breaching due to flow overtopping. Front. Struct. Civ. Eng., 2018, 12(3): 412‒424 https://doi.org/10.1007/s11709-017-0432-8

References

[1]
Basco D R, Shin C S. A one-dimensional numerical model for storm-breaching of barrier islands. Journal of Coastal Research, 1999, 15(1): 241–260
[2]
Tingsanchali T, Chinnarasri C. Numerical modeling of dam failure due to flow overtopping. Hydrological Sciences Journal, 2001, 46(1): 113–130
CrossRef Google scholar
[3]
Wang Z, Bowles D S. Three-dimensional non-cohesive earthen dam breach model. Part 1: theory and methodology. Advances in Water Resources, 2006, 29(10): 1528–1545
CrossRef Google scholar
[4]
Faeh R. Numerical modeling of breach erosion of river embankments. Journal of Hydraulic Engineering, 2007, 133(9): 1000–1009
CrossRef Google scholar
[5]
Pontillo M, Schmocker L, Greco M, Hager W H. 1D numerical evaluation of dike erosion due to overtopping. Journal of Hydraulic Research, 2010, 48(5): 573–582
CrossRef Google scholar
[6]
Volz C, Rousselot P, Vetsch D, Faeh R. Numerical modelling of non-cohesive embankment breach with the dual-mesh approach. Journal of Hydraulic Research, 2012, 50(6): 587–598
CrossRef Google scholar
[7]
Wu W, Marsooli R, He Z. Depth-averaged two-dimensional model of unsteady flow and sediment transport due to noncohesive embankment break/breaching. Journal of Hydraulic Engineering, 2012, 138(6): 503–516
CrossRef Google scholar
[8]
Kuiry S N, Ding Y, Wang S S Y. Numerical simulations of morphological changes in barrier islands induced by storm surges and waves using a supercritical flow model. Frontiers of Structural and Civil Engineering, 2014, 8(1): 57–68
CrossRef Google scholar
[9]
Lucy L B. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 1977, 82(12): 1013–1024
CrossRef Google scholar
[10]
Monaghan J J. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics, 1992, 30(1): 543–574
CrossRef Google scholar
[11]
Altomare C, Crespo A J C, Domínguez J M, Gómez-Gesteira M, Suzuki T, Verwaest T. Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures. Coastal Engineering, 2015, 96: 1–12
CrossRef Google scholar
[12]
Husain S M, Muhammed J R, Karunarathna H U, Reeve D E. Investigation of pressure variations over stepped spillways using smooth particle hydrodynamics. Advances in Water Resources, 2014, 66: 52–69
CrossRef Google scholar
[13]
Ataie-Ashtiani B, Shobeyri G. Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, 2008, 56(2): 209–232
CrossRef Google scholar
[14]
Capone T, Panizzo A, Monaghan J J. SPH modelling of water waves generated by submarine landslides. Journal of Hydraulic Research, 2010, 48(sup1): 80–84
CrossRef Google scholar
[15]
Memarzadeh R, Hejazi K. ISPH numerical modeling of nonlinear wave run-up on steep slopes. Journal of the Persian Gulf (Marine Science), 2012, 3(10): 17–26
[16]
Vacondio R, Rogers B D, Stansby P K, Mignosa P. Shallow water SPH for flooding with dynamic particle coalescing and splitting. Advances in Water Resources, 2013, 58: 10–23
CrossRef Google scholar
[17]
Bui H H, Fukagawa R. An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: Case of hydrostatic pore-water pressure. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(1): 31–50
CrossRef Google scholar
[18]
Hosseini S M, Manzari M T, Hannani S K. A fully explicit three-step SPH algorithm for simulation of non-Newtonian fluid flow. International Journal of Numerical Methods for Heat & Fluid Flow, 2007, 17(7): 715–735
CrossRef Google scholar
[19]
Manenti S, Sibilla S, Gallati M, Agate G, Guandalini R. SPH simulation of sediment flushing induced by a rapid water flow. Journal of Hydraulic Engineering, 2012, 138(3): 272–284
CrossRef Google scholar
[20]
Razavitoosi S L, Ayyoubzadeh S A, Valizadeh A. Two-phase SPH modelling of waves caused by dam break over a movable bed. International Journal of Sediment Research, 2014, 29(3): 344–356
CrossRef Google scholar
[21]
Ran Q, Tong J, Shao S, Fu X, Xu Y. Incompressible SPH scour model for movable bed dam break flows. Advances in Water Resources, 2015, 82: 39–50
CrossRef Google scholar
[22]
Memarzadeh R, Barani G, Ghaeini-Hessaroeyeh M. Numerical modeling of sediment transport based on unsteady and steady flows by incompressible smoothed particle hydrodynamics method. Journal of Hydrodynamics, 2017, (in press)
[23]
Asadi Kalameh H, Karamali A, Anitescu C, Rabczuk T. High velocity impact of metal sphere on thin metallic plate using smooth particle hydrodynamics (SPH) method. Frontiers of Structural and Civil Engineering, 2012, 6(2): 101–110
[24]
Shao S, Lo E. Incompressible SPH method for simulating Newtonian and non Newtonian flows with a free surface. Advances in Water Resources, 2003, 26(7): 787–800
CrossRef Google scholar
[25]
Ata R, Soulaimani A. A stabilized SPH method for inviscid shallow water flows. International Journal for Numerical Methods in Fluids, 2005, 47(2): 139–159
CrossRef Google scholar
[26]
Crespo A J C, Gómez-Gesteira M, Dalrymple R A. Modeling dam break behavior over a wet bed by a SPH technique. Journal of Hydraulic Engineering, 2008, 134(6): 313–320
[27]
Lee E S, Moulinec C, Xu R, Violeau D, Laurence D, Stansby P. Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. Journal of Computational Physics, 2008, 227(18): 8417–8436
CrossRef Google scholar
[28]
Khayyer A, Gotoh H. On particle-based simulation of a dam break over a wet bed. Journal of Hydraulic Research, 2010, 48(2): 238–249
CrossRef Google scholar
[29]
Ferrari A, Fraccarollo L, Dumbser M, Toro E F, Armanini A. Three-dimensional flow evolution after a dam break. Journal of Fluid Mechanics, 2010, 663: 456–477
CrossRef Google scholar
[30]
Chang T J, Kao H M, Chang K H, Hsu M H. Numerical simulation of shallow-water dam break flows in open channels using smoothed particle hydrodynamics. Journal of Hydrology (Amsterdam), 2011, 408(1-2): 78–90
CrossRef Google scholar
[31]
Shakibaeinia A, Jin Y C. A weakly compressible MPS method for modeling of open-boundary free-surface flow. International Journal for Numerical Methods in Fluids, 2010, 63(10): 1208–1232
[32]
Fourtakas G, Rogers B D. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU). Advances in Water Resources, 2016, 92: 186–199
CrossRef Google scholar
[33]
Jánosi I M, Jan D, Szabó K G, Tél T. Turbulent drag reduction in dam-break flows. Experiments in Fluids, 2004, 37(2): 219–229
CrossRef Google scholar
[34]
Schmocker L, Hager W H. Modelling dike breaching due to overtopping. Journal of Hydraulic Research, 2009, 47(5): 585–597
CrossRef Google scholar
[35]
Lo E Y M, Gotoh H, Shao S D. Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Applied Ocean Research, 2002, 24(5): 275–286
CrossRef Google scholar
[36]
Rabczuk T, Belytschko T, Xiao S P. Stable particle methods based on Lagrangian kernels. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12-14): 1035–1063
CrossRef Google scholar
[37]
Chen C L, Ling C H. Granular-flow rheology: role of shear-rate number in transition regime. Journal of Engineering Mechanics, 1996, 122(5): 469–480
CrossRef Google scholar
[38]
Ken-Ichi K. A plasticity theory for the kinematics of ideal granular materials. International Journal of Engineering Science, 1982, 20(1): 1–13
CrossRef Google scholar
[39]
Monaghan J J. Simulating free surface flows with SPH. Journal of Computational Physics, 1994, 110(2): 399–406
CrossRef Google scholar
[40]
Shakibaeinia A, Jin Y C. A mesh-free particle model for simulation of mobile-bed dam break. Advances in Water Resources, 2011, 34(6): 794–807
CrossRef Google scholar
[41]
Coleman S E, Andrews D P, Webby M G. Overtopping breaching of noncohesive homogeneous embankments. Journal of Hydraulic Engineering, 2002, 128(9): 829–838
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2479 KB)

Accesses

Citations

Detail

Sections
Recommended

/