Damage on lining concrete in highway tunnels under combined sulfate and chloride attack

Rongrong YIN, Chenchen ZHANG, Qing WU, Baocheng LI, He XIE

PDF(1189 KB)
PDF(1189 KB)
Front. Struct. Civ. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 331-340. DOI: 10.1007/s11709-017-0421-y
RESEARCH ARTICLE

Damage on lining concrete in highway tunnels under combined sulfate and chloride attack

Author information +
History +

Abstract

The combined effect from sulfate and chloride is one of the important reasons to cause the damage of lining concrete in highway tunnels. To investigate the effect of chloride ions on the corrosion of lining concretes under sulfate attack, ultrasonic detecting, compression test and X-ray Diffraction (XRD) were performed on the concretes to obtain the ultrasonic velocity, corrosion thickness, compression strength and corrosion products. The ultrasonic results, compression strength and XRD patterns confirmed that the existence of chloride certainly depressed the corrosion damage on the lining concretes under sulfate attack, and the depressing effect increased with the content of chloride in the composite solution. The corrosion damage on the concretes experienced three stages independent of the composition of corrosive solution: initial slower enhancement on the strength, stabilization period and linear degradation period. The existence of chloride mainly affected the final degradation stage and obviously decreased the corrosion thickness.

Keywords

lining concrete / sulfate / chloride / compression / ultrasonic

Cite this article

Download citation ▾
Rongrong YIN, Chenchen ZHANG, Qing WU, Baocheng LI, He XIE. Damage on lining concrete in highway tunnels under combined sulfate and chloride attack. Front. Struct. Civ. Eng., 2018, 12(3): 331‒340 https://doi.org/10.1007/s11709-017-0421-y

References

[1]
Livio L, Gabriele D M, Corrado Z. Reliabilitation of highway tunnels-techniques and procedures.In: Proceedings of AITES-ITA 2001 world tunnel congress.Vol.2, session 2–3, Bologna, 2001
[2]
Richards J A. Inspection maintenance and repair of tunnels: International lessons and practice. Tunnelling and Underground Space Technology, 1998, 13(4): 369–375
CrossRef Google scholar
[3]
Romer M, Holzer L, Pfiffner M. Swiss tunnel structures: concrete damage by formation of thaumasite. Cement and Concrete Composites, 2003, 25(8): 1111–1117
CrossRef Google scholar
[4]
Šuput J S, Mladenovic A, Cernilogar L, Olenšek V. Deterioration of mortar caused by the formation of thaumasite on the limestone cladding of some Slovenian railway tunnels. Cement and Concrete Composites, 2003, 25(8): 1141–1145
CrossRef Google scholar
[5]
Leemann A, Thalmann C, Studer W. Alkali-aggregate reaction in Swiss tunnels. Materials and Structures, 2005, 38(277): 381–386
CrossRef Google scholar
[6]
Inokuma A, Inano S. Road tunnel in Japan: deterioration and countermeasures. Tunnelling and Underground Space Technology, 1996, 11(3): 305–309
CrossRef Google scholar
[7]
Kazuaki K, Minoru K, Tsutomu T. Structure and construction examples of tunnel reinforcement method using thin steel panels. Nippon Steel Technical Report, 2005, 92: 45–50
[8]
Liang Yongning,Yuan Yingshu. Mechanism of concrete destruction under sodium sulfate and magnesium sulfate solution. Journal of the chinese ceramic society, 2007, 35(4): 504–508
[9]
Jin Zuquan,ZhaoTiejun,Sun Wei. Study on damage to concrete attacked by sulfates. Industrial construction, 2008, 38(2): 90–93
[10]
Kang Yong,Li Xiaohong,Xu Mou,Yang Guang, Xia Xiaoquan. Application of water quality analysis in Beacon Hill tunnel corrosion protection design in Chongqing. The chinese journal of geological hazard and control,2005, 16(2): 80–83
[11]
Chen J, Jiang M, Zhu J. Damage evolution in cement mortar due to erosion of sulfate. Corrosion Science, 2008, 50(9): 2478–2483
CrossRef Google scholar
[12]
Chu H, Chen J. Evolution of viscosity of concrete under sulfate attack. Construction & Building Materials, 2013, 39: 46–50
CrossRef Google scholar
[13]
Brown P W, Badger S. The distributions of bound sulfates and chlorides in concrete subjected to mixed NaCl,MgSO4,Na2SO4,attack. Cement and Concrete Research, 2000, 30(10): 1535– 1542
CrossRef Google scholar
[14]
Al-Amoudi O S B, Maslehuddin M, Abdul-Al Y A B. Role of chloride ions on expansion and strength reduction in plain and blended cements in sulfate environments. Construction & Building Materials, 1995, 9(1): 25–33
CrossRef Google scholar
[15]
Tumidajski P J, Chan G W. Effect of sulfate and carbon dioxide on chloride diffusivity. Cement and Concrete Research, 1996, 26(4): 551–556
CrossRef Google scholar
[16]
Jin Zuquan,Sun Wei,Zhang Yunsheng,Lai Jianzhong. Effect of chloride on damage of concrete attacked by sulfate. Journal of wuhan university of technology, 2006, 28(3): 42–46
[17]
Reju R, Jacob G J. Investigations on the chemical durability properties of Ultra High Performance Fibre Reinforced Concrete. International Conference on Green Technologies, 2012,181–185
[18]
Al-Amoudi O, Rasheeduzzafar A A, Maslehuddin M. Influence of Sulfate Ions on Chloride-Induced Reinforcement Corrosion in Portland and Blended Cement Concretes. Cement, Concrete and Aggregates, 1994, 16(16): 3–11
[19]
Chiker T, Aggoun S, Houari H, Siddique R. R. Sodium sulfate and alternative combined sulfate/chloride action on ordinary and self-consolidating PLC-based concretes. Construction & Building Materials, 2016, 106(1): 342–348
CrossRef Google scholar
[20]
Pradhan B. Corrosion behavior of steel reinforcement in concrete exposed to composite chloride–sulfate environment. Construction & Building Materials, 2014, 72: 398–410
[21]
Cong C, Yang L. Experimental research on concrete permeability of underground structure. Rock and Soil Mechanics, 2011, 32(8): 2379–2385
[22]
Pan Hongke, Niu Jishou, Yang Linde, Tang Yongjing. The durability deterioration model based on carbonation for underground concrete structures. Engineering mechanics, 2008, 25(7): 172–178
[23]
Lei Mingfeng, Peng Limin, Shi Chenghua. Experimental study on evolution law of mechanical properties of tunnel structure suffering ambient sulfate. China civil engineering journal,2013, 46(1): 126–132
[24]
Zhang Fengjie, Yuan Yingshu, Du Jianmin.Ultrasonic detection in concrete structures of damage from sulfate attack. Journal of China University of Mining & Technology, 2011, 40(3): 373–378
[25]
Du Jianmin J R, Ji Y. The reduction in sulfate corrosion of concrete by chloride ion. Journal of China University of Mining & Technology, 2012, 41(6): 906–911
[26]
Luo L. Approximate formula of integral intensity in X optical diffraction. College Physics, 2004, 23(12): 49–50
[27]
Zhang Q, Liu GL, Cheng CH, Du HX. Experimental study on high strength concrete after high temperature based on XRD. China concrete and cement products, 2015, 3: 9–11

Acknowledgements

The authors would like to acknowledge two financial supports provided by National Science Foundation under Grant No: 51408268 and Jiangsu Natural Science Foundation under Grant No:BK20141294.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1189 KB)

Accesses

Citations

Detail

Sections
Recommended

/