Multiscale mechanical modeling of hydrated cement paste under tensile load using the combined DEM-MD method

Yue HOU, Linbing WANG

PDF(1085 KB)
PDF(1085 KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 270-278. DOI: 10.1007/s11709-017-0408-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Multiscale mechanical modeling of hydrated cement paste under tensile load using the combined DEM-MD method

Author information +
History +

Abstract

In this paper, a combined DEM-MD method is proposed to simulate the crack failure process of Hydrated Cement Paste (HCP) under a tensile force. A three-dimensional (3D) multiscale mechanical model is established using the combined Discrete Element Method (DEM)-Molecular Dynamics (MD) method in LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). In the 3D model, HCP consists of discrete particles and atoms. Simulation results show that the combined DEM-MD model is computationally efficient with good accuracy in predicting tensile failures of HCP.

Keywords

hydrated cement paste / multiscale / MD simulation / DEM

Cite this article

Download citation ▾
Yue HOU, Linbing WANG. Multiscale mechanical modeling of hydrated cement paste under tensile load using the combined DEM-MD method. Front. Struct. Civ. Eng., 2017, 11(3): 270‒278 https://doi.org/10.1007/s11709-017-0408-8

References

[1]
Cundall P A, Strack  O D L. A discrete numerical mode for granular assemblies. Geotechnique, 1979, 29(1): 47–65
CrossRef Google scholar
[2]
Hou Y, Wang  L, Yue P ,  Sun W. Fracture failure in crack interaction of asphalt binder by using a phase field approach. Materials and Structures, 2015, 48(9): 2997–3008
CrossRef Google scholar
[3]
Hou Y, Wang  L, Pauli T ,  Sun W. Investigation of the asphalt Self-Healing mechanism using a Phase-Field model. J Mater Civil Eng, 2015, 27(3): 4014118
CrossRef Google scholar
[4]
Hou Y, Sun  F, Sun W ,  Guo M, Xing  C, Wu J . Quasi-brittle fracture modeling of preflawed bitumen using a diffuse interface model. Advances in Materials Science and Engineering, 2016, 2016: 8751646
[5]
Hou Y, Sun  W, Das P ,  Song X, Wang  L, Ge Z ,  Huang Y . Coupled navier–stokes Phase-Field model to evaluate the microscopic phase separation in asphalt binder under thermal loading. J Mater Civil Eng, 2016, 28(10): 4016100
CrossRef Google scholar
[6]
Hou Y, Wang  L, Yue P ,  Pauli T ,  Sun W. Modeling mode I cracking failure in asphalt binder by using nonconserved Phase-Field model. J Mater Civil Eng, 2014, 26(4): 684–691
CrossRef Google scholar
[7]
Allen A J, Thomas  J J, Jennings  H M. Composition and density of nanoscale calcium-silicate-hydrate in cement. Nature Materials, 2007, 6(4): 311–316
CrossRef Google scholar
[8]
Zhang Q. Creep Properties of Cementitious Materials: Effect of Water and Microstructure, An Approach by Microindentation. Dissertation for PhD degree. Paris Est, 2014
[9]
Pellenq R J, Kushima  A, Shahsavari R ,  Van Vliet K J ,  Buehler M J ,  Yip S, Ulm  F J. A realistic molecular model of cement hydrates. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(38): 16102–16107
CrossRef Google scholar
[10]
Hou D, Zhao  T, Wang P ,  Li Z, Zhang  J. Molecular dynamics study on the mode I fracture of calcium silicate hydrate under tensile loading. Engineering Fracture Mechanics, 2014, 131: 557–569
CrossRef Google scholar
[11]
Fonseca P C, Jennings  H M, Andrade  J E. A nanoscale numerical model of calcium silicate hydrate. Mechanics of Materials, 2011, 43(8): 408–419
CrossRef Google scholar
[12]
Hou D, Li  Z. Large-scale simulation of calcium silicate hydrate by molecular dynamics. Adv Cem Res, 2015, 27(5): 278–288
[13]
Jennings H M. A model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Research, 2000, 30(1): 101–116
CrossRef Google scholar
[14]
Thomas J J, Jennings  H M. A colloidal interpretation of chemical aging of the C-S-H gel and its effects on the properties of cement paste. Cement and Concrete Research, 2006, 36(1): 30–38
CrossRef Google scholar
[15]
Hou D, Zhu  Y, Lu Y ,  Li Z. Mechanical properties of calcium silicate hydrate (C–S–H) at nano-scale: a molecular dynamics study. Materials Chemistry and Physics, 2014, 146(3): 503–511
CrossRef Google scholar
[16]
Sun W, Wei  Y, Wang D ,  Wang L. Review of multiscale characterization techniques and multiscale modeling methods for cement concrete: from atomistic to continuum. In: Kringos N, Birgisson B, Frost D, Wang L, eds. Multi-Scale Modeling and Characterization of Infrastructure Materials. Springer Netherlands, 2013
[17]
Richardson I G . Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaol. Cement and Concrete Research, 2004, 34(9): 1733–1777
CrossRef Google scholar
[18]
Scherer G W. Structure and properties of gels- I. Theory. Cement and Concrete Research, 1999, 29(8): 1149–1157
CrossRef Google scholar
[19]
Powers T C. Structure and physical properties of hardened Portland cement paste. Journal of the American Ceramic Society, 1958, 41(1): 1–6
CrossRef Google scholar
[20]
Diamond S. Hydraulic cement pastes: their structure and properties. Cement and Concrete Association, Slough, UK, 1976, 1–334
[21]
Nguyen VP, Stroeven  M, Sluys LJ . Multiscale failure modeling of concrete: micromechanical modeling, discontinuous homogenization and parallel computations. Computer Methods in Applied Mechanics & Engineering, 2012, s 201–204:139–156
[22]
Qian Z. Multiscale Modeling of Fracture Processes in Cementitious Materials. Dissertation for PhD degree. Haveka B V, 2012
[23]
Talebi H, Silani  M, Rabczuk T . Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92
CrossRef Google scholar
[24]
Silani M, Talebi  H, Hamouda A M ,  Rabczuk T . Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. J Comput SCI-Neth, 2016, 15: 18–23
CrossRef Google scholar
[25]
Silani M, Ziaei-Rad  S, Talebi H ,  Rabczuk T . A semi-concurrent multiscale approach for modeling damage in nanocomposites. Theoretical and Applied Fracture Mechanics, 2014, 74: 30–38
CrossRef Google scholar
[26]
Talebi H, Silani  M, Bordas S P A ,  Kerfriden P ,  Rabczuk T . A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071
CrossRef Google scholar
[27]
Aarnes J E, Krogstad  S, Lie K A . A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids. Siam Journal on Multiscale Modeling & Simulation, 2006, 5(2): 337–363
CrossRef Google scholar
[28]
Gu Y T, Zhang  L C. A concurrent multiscale method based on the meshfree method and molecular dynamics analysis. Siam Journal on Multiscale Modeling & Simulation, 2006, 5(4): 1128–1155
CrossRef Google scholar
[29]
Zhu H, Wang  Q, Zhuang X . A nonlinear semi-concurrent multiscale method for dynamic fractures. International Journal of Impact Engineering, 2015, 87: 65–82
CrossRef Google scholar
[30]
Jin Z H, Sun  C T. A Yoffe crack/cohesive zone model for a steady state moving crack. Mechanics Research Communications, 2016, 71: 44–47
CrossRef Google scholar
[31]
Wu T, Wriggers  P. Multiscale diffusion–thermal–mechanical cohesive zone model for concrete. Computational Mechanics, 2015, 55(5): 999–1016
CrossRef Google scholar
[32]
Karedla R S, Reddy  J N. Modeling of crack tip high inertia zone in dynamic brittle fracture. Engineering Fracture Mechanics, 2007, 74(13): 2084–2098
CrossRef Google scholar
[33]
Ulm F J, Constantinides  G, Heukamp F H . Is concrete a poromechanics materials?—A multiscale investigation of poroelastic properties. Materials and Structures, 2004, 37(1): 43–58
CrossRef Google scholar
[34]
Mondal P. Nanomechanical properties of cementitious materials. Dissertations & Theses- Gradworks, 2008
[35]
Manzano H, Masoero  E, Lopez-Arbeloa I ,  Jennings H M . Mechanical behaviour of ordered and disordered calcium silicate hydrates under shear strain studied by atomic scale simulations. International Conference on Creep, Shrinkage, and Durability Mechanics, 2013, 86–97
[36]
Alzina A, Toussaint  E, Béakou A ,  Skoczen B . Multiscale modelling of thermal conductivity in composite materials for cryogenic structures. Composite Structures, 2006, 74(2): 175–185
CrossRef Google scholar
[37]
Mortazavi B, Hassouna  F, Laachachi A ,  Rajabpour A ,  Ahzi S, Chapron  D, Toniazzo V ,  Ruch D. Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites. Thermochimica Acta, 2013, 552: 106–113
CrossRef Google scholar
[38]
Mortazavi B, Pötschke  M, Cuniberti G . Multiscale modeling of thermal conductivity of polycrystalline graphene sheets. Nanoscale, 2014, 6(6): 3344–3352
CrossRef Google scholar
[39]
Tonks M R, Liu  X Y, Andersson  D, Perez D ,  Chernatynskiy A ,  Pastore G ,  Stanek C R ,  Williamson R . Development of a multiscale thermal conductivity model for fission gas in UO 2. Journal of Nuclear Materials, 2016, 469: 89–98
CrossRef Google scholar
[40]
Tonks M R, Millett  P C, Nerikar  P, Du S ,  Andersson D ,  Stanek C R ,  Gaston D ,  Andrs D ,  Williamson R . Multiscale development of a fission gas thermal conductivity model: coupling atomic, meso and continuum level simulations. Journal of Nuclear Materials, 2013, 440(1‒3): 193–200
CrossRef Google scholar
[41]
HouY, HuangY, SunF, Guo M. Fractal analysis on asphalt mixture using a two-dimensional imaging technique. Advances in Materials Science and Engineering, 2016, 2016: 8931295
[42]
GeZ, WangY, HouY, Sun W, SunR . Evaluation of fracture in mortar subject to tension loading using phase field model and three point bending test.Materials and Design, 2015, 86: 121–128
[43]
HouY, SunW, HuangY, Ayatollahi M, WangL , ZhangJ. Diffuse interface model to investigate the asphalt concrete cracking subjected to shear loading at a low temperature. Journal of Cold Regions Engineering, 2017, 31(2): 04016009
[44]
HouY, WangL, WangD, Liu P, GuoM , YuJ. Characterization of bitumen micro-mechanical behaviors using AFM, phase dynamics theory and MD simulation. Materials, 2017, 10(2): 208
[45]
HouY, GuoM, GeZ, WangL, SunW. Mixed-Mode I-II cracking characterization of mortar using phase-field method.Journal of Engineering Mechanics, 2017, 143(7): 04017033

Acknowledgement

The research performed in this paper is supported by FHWA (DTFH61-10-R-00019), and Open Fund of State Key Laboratory of Disaster Reduction in Civil Engineering (SLDRCE15-03). The financial support is greatly appreciated. The authors also want to thank anonymous reviewers for their comments and suggestions.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1085 KB)

Accesses

Citations

Detail

Sections
Recommended

/