A study on fatigue damage of asphalt mixture under different compaction using 3D-microstructural characteristics

Jing HU, Pengfei LIU, Bernhard STEINAUER

PDF(2738 KB)
PDF(2738 KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 329-337. DOI: 10.1007/s11709-017-0407-9
RESEARCH ARTICLE
RESEARCH ARTICLE

A study on fatigue damage of asphalt mixture under different compaction using 3D-microstructural characteristics

Author information +
History +

Abstract

The aim of this paper is investigating the microstructural characteristics of asphalt mixture under different compaction powers. In order to achieve this aim, a test track was built to provide asphalt mixture specimens and X-ray computed tomography (XCT) device was used to scan the internal structure. The aggregate particles and air-voids were extracted using Digital Image Processing (DIP), so the relationship between compaction and air-voids was determined at first, and then, the effect of aggregate particles on the morphology of air-voids can be evaluated, finally, fatigue properties of asphalt mixture with different air-void ratio were measured by indirect tensile fatigue test as well. The research results release the distribution of microstructures in asphalt pavement. 3D fractal dimension is an effective indicator to quantize the complexity of aggregate particles and air-voids; suffering the same compaction power, aggregates cause different constitutions of air-voids in asphalt mixture; investigation in this paper can present the essential relationship between microstructures and fatigue properties.

Keywords

asphalt mixture / microstructure / morphology / digital image processing / fatigue damage

Cite this article

Download citation ▾
Jing HU, Pengfei LIU, Bernhard STEINAUER. A study on fatigue damage of asphalt mixture under different compaction using 3D-microstructural characteristics. Front. Struct. Civ. Eng., 2017, 11(3): 329‒337 https://doi.org/10.1007/s11709-017-0407-9

References

[1]
Hou Y, Wang  L, Pauli T ,  Sun W. Investigation of the asphalt self-healing mechanism using a phase-field model. Journal of Materials in Civil Engineering, 2015, 27(3): 04014118
CrossRef Google scholar
[2]
Apeagyei A K, Grenfell  J R A, Airey  G D. Observation of reversible moisture damage in asphalt mixtures. Construction & Building Materials, 2014, 60: 73–80
CrossRef Google scholar
[3]
Presti D. L, Hassan  N. A, Khan  R, Airey G. Reclaimed Asphalt aest specimen preparation assisted by image analysis. Journal of Materials in Civil Engineering, 2014, 27(8): C4014005
[4]
Mohajeri M, Molenaar  A A A, Van de Ven  M F C. Experimental study into the fundamental understanding of blending between reclaimed asphalt binder and virgin bitumen using nanoindentation and nano-computed tomography. Road Materials and Pavement Design, 2014, 15(2): 372–384
CrossRef Google scholar
[5]
Arega Z A, Bhasin  A, Kesel T D . Influence of extended aging on the properties of asphalt composites produced using hot and warm mix methods. Construction & Building Materials, 2013, 44: 168–174
CrossRef Google scholar
[6]
Braz D, Barroso  R C, Lopes  R T, Motta  L M G. Crack detection in asphaltic mixtures by computed tomography. NDT & E International, 2011, 44(2): 195–201
CrossRef Google scholar
[7]
Moriyoshi A, Takahashi  N, Ikeda O ,  Kawashima M ,  Akabane T . Strain distribution in asphalt mixtures during the wheel tracking test at high temperatures. Construction & Building Materials, 2013, 40: 1128–1135
CrossRef Google scholar
[8]
Liu P, Hu  J, Wang D ,  Oeser M ,  Alber S ,  Ressel W ,  Canon Falla G . Modelling and evaluation of aggregate morphology on asphalt compression behavior. Construction & Building Materials, 2017, 133: 196–208
CrossRef Google scholar
[9]
Castillo D, Caro  S, Darabi M ,  Masad E . Studying the effect of microstructural properties on the mechanical degradation of asphalt mixtures. Construction & Building Materials, 2015, 93: 70–83
CrossRef Google scholar
[10]
Aliha M R M ,  Fazaeli H ,  Aghajani S ,  Moghadas Nejad F . Effect of temperature and air void on mixed mode fracture toughness of modified asphalt mixtures. Construction & Building Materials, 2015, 95: 545–555
CrossRef Google scholar
[11]
Yan K, Ge  D D, You  L Y, Wang  X L. Laboratory investigation of the characteristics of SMA mixtures under freeze–thaw cycles. Cold Regions Science and Technology, 2015, 119: 68–74
CrossRef Google scholar
[12]
Khosravi H, Abtahi  S M, Koosha  B, Manian M . An analytical–empirical investigation of the bleeding mechanism of asphalt mixes. Construction & Building Materials, 2013, 45: 138–144
CrossRef Google scholar
[13]
Kodippily S, Henning  T F P, Ingham  J M, Holleran  G. Computed tomography scanning for quantifying chipseal material volumetrics. Journal of Computing in Civil Engineering, 2014, 28(3): 04014002
CrossRef Google scholar
[14]
Coleri E, Harvey  J T, Yang  K, Boone J M . A micromechanical approach to investigate asphalt concrete rutting mechanisms. Construction & Building Materials, 2012, 30: 36–49
CrossRef Google scholar
[15]
Coleri E, Harvey  J T, Yang  K, Boone J M . Micromechanical investigation of open-graded asphalt friction courses’rutting mechanisms. Construction & Building Materials, 2013, 44: 25–34
CrossRef Google scholar
[16]
Sefidmazgi N. R ,  Tashman L ,  Bahia H. Internal structure characterization of asphalt mixtures for rutting performance using imaging analysis. Road Materials and Pavement Design, 2012, 13(sup1 S1): 21–37
CrossRef Google scholar
[17]
Khan R, Grenfell  J, Collop A ,  Airey G ,  Gregory H . Moisture damage in asphalt mixtures using the modified SATS test and image analysis. Construction & Building Materials, 2013, 43: 165–173
CrossRef Google scholar
[18]
Khan R, Grenfell  J, Collop A . Micromechanical modelling of typical Dense Bitumen Macadam (DBM) from laboratory testing and X-ray Computed Tomography (CT). Construction & Building Materials, 2015, 77: 1–6
CrossRef Google scholar
[19]
Zhang Y Q, Luo  X, Luo R ,  Lytton R L . Crack initiation in asphalt mixtures under external compressive loads. Construction & Building Materials, 2014, 72: 94–103
CrossRef Google scholar
[20]
Liu P, Wang  D, Otto F ,  Hu J, Oeser  M. Application of semi-analytical finite element method to evaluate asphalt pavement bearing capacity. International Journal of Pavement Engineering, 2017 
CrossRef Google scholar
[21]
Tashman L, Pearson  B. Characterisation of stone matrix asphalt mixtures. International Journal of Pavement Engineering, 2012, 13(4): 297–309
CrossRef Google scholar
[22]
Zelelew H M, Papagiannakis  A T. A volumetrics thresholding algorithm for processing asphalt concrete X-ray CT images. International Journal of Pavement Engineering, 2011, 12(6): 543–551
CrossRef Google scholar
[23]
Kutay M E, Arambula  E, Gibson N ,  Youtcheff J . Three-dimensional image processing methods to identify and characterise aggregates in compacted asphalt mixtures. International Journal of Pavement Engineering, 2010, 11(6): 511–528
CrossRef Google scholar
[24]
Xu X Y, Xu  S Z, Jin  L H, Song  E. Characteristic analysis of Otsu threshold and its applications. Pattern Recognition Letters, 2011, 32(7): 956–961
CrossRef Google scholar
[25]
Mizushima A, Lu  R. An image segmentation method for apple sorting and grading using support vector machine and Otsu’s method. Computers and Electronics in Agriculture, 2013, 94: 29–37
CrossRef Google scholar
[26]
Arasan S, Yener  E, Hattatoglu F ,  Akbulut S ,  Hinislioglu S. The relationship between the fractal dimension and mechanical properties of asphalt concrete. International journal of civil and structural engineering, 2010, 1(2):165–70
[27]
Baer J U, Kent  T F, Anderson  S H. Image analysis and fractal geometry to characterize soil desiccation cracks. Geoderma, 2009, 154(1–2): 153–163
CrossRef Google scholar
[28]
Farhidzadeh A, Dehghan-Niri  E, Moustafa A ,  Salamone S ,  Whittaker A . Damage assessment of reinforced concrete structures using fractal analysis of residual crack patterns. Experimental Mechanics, 2013, 53(9): 1607–1619
CrossRef Google scholar

Acknowleagement

The work underlying this project was carried out under the research grant number FOR 2089, on behalf of the grant sponsor, the German Research Foundation (DFG).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2738 KB)

Accesses

Citations

Detail

Sections
Recommended

/