A preliminary research on wireless cantilever beam vibration sensor in bridge health monitoring
Xinlong TONG, Shanglin SONG, Linbing WANG, Hailu YANG
A preliminary research on wireless cantilever beam vibration sensor in bridge health monitoring
According to specific bridge environment, optimal design piezoelectric cantilever beam structure by using results of theoretical calculations and simulation, verify natural frequencies of piezoelectric cantilever beam and production ability of data by experiment, thus formed a complete set of design method of piezoelectric cantilever beam. Considering natural frequency of vibration and intensity of the beam body, design a new type of piezoelectric cantilever beam structure. Paper analyzes the principle of sensor data acquisition and transmission, design a hardware integration system include signal conversion module, microcontroller module and wireless transmission module, test local read and wireless transmission for the combination structure of cantilever beam and data collection card, experimental verification of the radio piezoelectric vibrating cantilever vibration response is intact, the beam produced signal by vibration, acquisition card converts and wireless transmit data, this proved a good and intuitive linear response in simulation of bridge vibration test. Finally, the paper designed a kind of new wireless sensor of vibration cantilever beam, suitable for small bridge health monitoring based on Internet of things.
piezoelectric cantilever beam / bridge / natural frequency / wireless sensor
[1] |
Hou Y, Wang L, Yue P, Pauli T, Sun W. Modeling Mode I Cracking Failure in Asphalt Binder by Using Nonconserved Phase-Field Model. Journal of Materials in Civil Engineering, 2014, 26(4): 684–691
CrossRef
Google scholar
|
[2] |
Hou Y, Sun F, Sun W, Guo M, Xing C, Wu J.
|
[3] |
Wickramasinghe W R, Thambiratnam D P, Chan T H T, Nguyen T. Vibration characteristics and damage detection in a suspension bridge. Journal of Sound and Vibration, 2016, 375: 254–274
CrossRef
Google scholar
|
[4] |
Sun Q S, Chang J F. DHGF Theory Based on the Concrete Bridge Safety Evaluation Methods. Advanced Materials Research. Trans Tech Publications, 2011, 243: 1774–1782
|
[5] |
Chen J., Han X, rnal Wei Chen. A bridge cluster health monitoring system based on 3G wireless sensor network. Electronic Design Engineering, 2012, 14: 023
|
[6] |
Muriuki M G, Clark W W, Chen Q M. Design and analysis of a piezoelectric cantilever beam resonator. Smart Structures and Materials. International Society for Optics and Photonics, 2003, 50(55): 36–47
|
[7] |
Roundy S, Steingart D, Frechette L,
|
[8] |
Hou Y, Yue P, Wang L, Sun W. Fracture Failure in Crack interaction of Asphalt Binder by Using a Phase Field Approach. Materials and Structures, 2015, 48(9): 2997–3008
CrossRef
Google scholar
|
[9] |
Hou Y, Wang L, Pauli T, Sun W. Investigation of the Asphalt Self-healing Mechanism Using a Phase-Field Model. Journal of Materials in Civil Engineering, 2015, 27(3): 04014118
CrossRef
Google scholar
|
[10] |
Takei R, Makimoto N, Okada H,
|
[11] |
Federici F, Alesii R, Colarieti A, Faccio M, Graziosi F, Gattulli V, Potenza F. Design of wireless sensor nodes for structural health monitoring applications. Procedia Engineering, 2014, 87: 1298–1301
CrossRef
Google scholar
|
[12] |
Mohamed R, Sarker M R. Mohamed A. An optimization of rectangular shape piezoelectric energy harvesting cantilever beam for micro devices. International Journal of Applied Electromagnetics and Mechanics, 2016, 50(4):537–548
|
[13] |
Qingsong C, Yuehai H. Multi-rate vibration control of smart piezoelectric cantilever beam. In: the International Conference on. IEEE, 2010, 2691–2694
|
[14] |
Wickramasinghe W R, Thambiratnam D P, Chan T H T, Nguyen T. Vibration characteristics and damage detection in a suspension bridge. Journal of Sound and Vibration, 2016, 375: 254–274
CrossRef
Google scholar
|
[15] |
Jackson N, Stam F, Olszewski O Z, Doyle H, Quinn A, Mathewson A. Widening the bandwidth of vibration energy harvesters using a liquid-based non-uniform load distribution. Sensors and Actuators. A, Physical, 2016, 246: 170–179
CrossRef
Google scholar
|
[16] |
Kim, J., Park, S, Lim, W, etc. Design Optimization of PZT-Based Piezoelectric Cantilever Beam by Using Computational Experiments. Journal of Electronic Materials, 2016, 45(8): 3848–3858
|
[17] |
Koo K Y, Brownjohn J M W, List D I, Cole R. Structural health monitoring of the Tamar suspension bridge. Structural Control and Health Monitoring, 2013, 20(4): 609–625
CrossRef
Google scholar
|
[18] |
Li Y, Guo Z, Wei H. Application of Piezoelectricity Acceleration Sensor to Dynamic Characteristics Monitoring of Tied Arch Bridge. Applied Mechanics and Materials. Trans Tech Publications, 2012, 184: 715–718
|
[19] |
Cantero D, Ülker-Kaustell M, Karoumi R. Time–frequency analysis of railway bridge response in forced vibration. Mechanical Systems and Signal Processing, 2016, 76: 518–530
CrossRef
Google scholar
|
[20] |
Jia Y, Seshia A A. Five topologies of cantilever-based MEMS piezoelectric vibration energy harvesters: a numerical and experimental comparison. Microsystem Technologies, 2015, 22(12): 2841–2852
|
/
〈 | 〉 |