Soil arching effect of Lattice-Shaped Diaphragm Wall as bridge foundation

Jiujiang WU, Lingjuan WANG, Qiangong CHENG

PDF(5305 KB)
PDF(5305 KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 446-454. DOI: 10.1007/s11709-017-0397-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Soil arching effect of Lattice-Shaped Diaphragm Wall as bridge foundation

Author information +
History +

Abstract

As a new type of bridge foundation, Lattice-Shaped Diaphragm Wall (hereinafter for LSDW) is highly concerned in relevant construction area but its research is far from achievement. Based on PFC2D, the soil arching effect of LSDWs is studied thoroughly in this paper and the special attention is given to its influencing factors. It turns out to be that a differential wall-soil settlement can be found at the lower location of soil core of an LSDW which is one of the trigger factors of soil arching; meanwhile, the differential settlement degree can reflect the exertion degree of soil arching; the shape of soil arching is basically a hemisphere which can be explained by the theory proposed by Hewlett and Randolph; normally, the chamber number is a negative factor for the development of soil arching; the soil arching effect is significantly influenced by the distance of two adjacent wall elements and the foundation depth, and a relatively large or small value of these factors is disadvantageous to the exertion of soil arching; in addition, the soil arching effect increase with the growth of stiffness and friction coefficient of particles and the friction coefficient of particles has insignificant influence on the development of soil arching effect compared with particle stiffness.

Keywords

LSDW / soil arching / PFC2D / shape of soil arching / influencing factors

Cite this article

Download citation ▾
Jiujiang WU, Lingjuan WANG, Qiangong CHENG. Soil arching effect of Lattice-Shaped Diaphragm Wall as bridge foundation. Front. Struct. Civ. Eng., 2017, 11(4): 446‒454 https://doi.org/10.1007/s11709-017-0397-7

References

[1]
WenH, Cheng  Q, MengF ,  Diaphragm wall-soil-cap interaction in rectangular closed diaphragm wall bridge foundations. Frontiers of Structural and Civil Engineering, 2009, 3(1): 93–100
[2]
Cheng Q, Wu  J, Song Z ,  Wen H. The behavior of a rectangular closed diaphragm wall when used as a bridge foundation. Frontiers of Structural and Civil Engineering, 2012, 6(4): 398–420
[3]
Wu J, Cheng  Q, Wen H ,  Cao J. Comparison on the vertical behavior of lattice shaped diaphragm wall and pile group under similar material quantity in soft soil. KSCE Journal of Civil Engineering, 2015, 19(7): 2051–2060
CrossRef Google scholar
[4]
Cong A. Design. Construction and application of impervious works for deep foundation pit. Beijing: Intellectual Property Publishing House, 2012.
[5]
Dai G, Gong  W, Zhou X ,  Experiment and analysis on horizontal bearing capacity of single-chamber closed diaphragm wall. Journal of Building Structures, 2012, 33(9): 67–73
[6]
Zhang S, Cheng  Q, Gong W ,  In-situ static vertical loading test on rectangular diaphragm wall in loess subgrade. Rock and Soil Mechanics, 2008, 29(10): 2713–2718
[7]
Underground Continuous Wall Foundation Association. Outlook of underground continuous wall foundation. Foundation Engineering, 2001, 29(1): 60–65
[8]
Ding X, Liu  H, Liu J ,  Chen Y. Wave propagation in a pipe pile for low-strain integrity testing. Journal of Engineering Mechanics, 2011, 137(9): 598–609
CrossRef Google scholar
[9]
Matsumoto T, Takei  M. Effects of soil plug on behaviour of driven pipe piles. Soil and Foundation, 1991, 31(2): 14–34
CrossRef Google scholar
[10]
Talesnick M. Measuring soil contact pressure on a solid boundary and quantifying soil arching. Geotechnical Testing Journal, 2005, 28(2): 171–179
[11]
Jian Z, Fei  L, Jiao Z ,  Cui J. Study of PFC numerical simulation of soil nailing wall support excavation. Journal of Tongji University, 2011, 39(7): 966–970 (Natural Science)
[12]
Jian Z, Wang  J, Yuan Z . Simulation of slope stability analysis by particle flow code. Rock and Soil Mechanics, 2009, 30(1): 86–90
[13]
Low B K, Tang  S K, Choa  V. Arching in piled embankments. Journal of Geotechnical Engineering, 1994, 120(11): 1917–1938
CrossRef Google scholar
[14]
Chen Y, Jia  N, Chen R . Soil arch analysis of pile-supported embankments. China Journal of Highway and Transport, 2004, 17(4): 1–6
[15]
Itasca Consulting Group, Inc.PFC 2D-Particale Flow Code in 2 Dimensions: theory and background. Minneapolis, Minnesota, 1999.
[16]
Hewlett W J, Randolph  M F. Analysis of piled embankments. Ground Engineering., 1988, 21(3): 12–18

Acknowledgements

This research was supported by China Schoiarship Council, the National Nature Science Foundation of China (Grant Nos. 41172260, 41372292, 51108393), and the Innovation Team of the Ministry of Education in China (No. IRT13092), as well as the Doctoral Fund of Southwest University of Science and Technology (15zx7152).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(5305 KB)

Accesses

Citations

Detail

Sections
Recommended

/