Fracture model for the prediction of the electrical percolation threshold in CNTs/Polymer composites

Yang SHEN , Pengfei HE , Xiaoying ZHUANG

Front. Struct. Civ. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 125 -136.

PDF (1917KB)
Front. Struct. Civ. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 125 -136. DOI: 10.1007/s11709-017-0396-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Fracture model for the prediction of the electrical percolation threshold in CNTs/Polymer composites

Author information +
History +
PDF (1917KB)

Abstract

In this paper, we propose a 3D stochastic model to predict the percolation threshold and the effective electric conductivity of CNTs/Polymer composites. We consider the tunneling effect in our model so that the unrealistic interpenetration can be avoided in the identification of the conductive paths between the CNTs inside the polymer. The results are shown to be in good agreement with reported experimental data.

Keywords

electrical percolation / CNTs/Polymer composites / fracture model / electric conductivity / tunnelling effects

Cite this article

Download citation ▾
Yang SHEN, Pengfei HE, Xiaoying ZHUANG. Fracture model for the prediction of the electrical percolation threshold in CNTs/Polymer composites. Front. Struct. Civ. Eng., 2018, 12(1): 125-136 DOI:10.1007/s11709-017-0396-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sandler J, Shaffer M S P, Prasse T, Bauhofer W, Schulte K, Windle A H. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer, 1999, 40(21): 5967–5971

[2]

Michael G H, Tejas N. Radiofrequency interaction with conductive colloids: permittivity and electrical conductivity of single-wall carbon nanotubes in sallne. Bioelectromagnetics, 2010, 31(8): 582–588

[3]

Martin C A, Sandler J K W, Shaffer M S P, Schwarz M K, Bauhofer W, Schulte K, Windle A H. Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Composites Science and Technology, 2004, 64(15): 2309–2316

[4]

Bauhofer W, Kovacs J Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 2009, 69(10): 1486–1498

[5]

Bryning M B, Islam M F, Kikkawa J M, Yodh A G. Very low conductivity threshold in bulk isotropic single-walled carbon nanotube–epoxy composites. Advanced Materials, 2005, 17(9): 1186–1191

[6]

Ounaies Z, Park C, Wise K E, Siochi E J, Harrison J S. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Composites Science and Technology, 2003, 63(11): 1637–1646

[7]

Kymakis E, Amaratunga G A J. Electrical properties of single-wall carbon nanotube-polymer composite films. Journal of Applied Physics, 2006, 99(8): 56

[8]

Ramasubramaniam R, Chen J, Liu H. Homogeneous carbon nanotube/polymer composites for electrical applications. Applied Physics Letters, 2003, 83(14): 2928–2930

[9]

Griebel M, Hamaekers J. Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites. Computer Methods in Applied Mechanics and Engineering, 2004, 193(17): 1773–1788

[10]

Frankland S J V, Caglar A, Brenner D W, Griebel M. Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces. Journal of Physical Chemistry B, 2002, 106(12): 3046–3048

[11]

Zhu R, Pan E, Roy A K. Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced epon 862 composites. Materials Science and Engineering A, 2007, 447(1): 51–57

[12]

Arash B, Park H S, Rabczuk T. Mechanical properties of carbon nanotube reinforced polymer nanocomposites: A coarse-grained model. Composites. Part B, Engineering, 2015, 80: 92–100

[13]

Quayum M S, Zhuang X, Rabczuk T. Computational model generation and rve design of self-healing concrete. Journal of Contemporary Physics, 2015, 50(4): 383–396

[14]

Mortazavi B, Baniassadi M, Bardon J, Ahzi S. Modeling of two-phase random composite materials by finite element, mori–tanaka and strong contrast methods. Composites. Part B, Engineering, 2013, 45(1): 1117–1125

[15]

Mortazavi B, Bardon J, Ahzi S. Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3d finite element study. Computational Materials Science, 2013, 69: 100–106

[16]

Hamdia K M, Msekh M A, Silani M, Vu-Bac N, Zhuang X, Nguyen-Thoi T, Rabczuk T. Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Composite Structures, 2015, 133: 1177–1190

[17]

Silani M, Talebi H, Ziaei-Rad S, Kerfriden P, Bordas S P A, Rabczuk T. Stochastic modelling of clay/epoxy nanocomposites. Composite Structures, 2014, 118: 241–249

[18]

Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (pncs). Composites. Part B, Engineering, 2014, 59: 80–95

[19]

Ghasemi H, Brighenti R, Zhuang X, Muthu J, Rabczuk T. Optimization of fiber distribution in fiber reinforced composite by using nurbs functions. Computational Materials Science, 2014, 83: 463–473

[20]

Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464

[21]

Ghasemi H, Brighenti R, Zhuang X, Muthu J, Rabczuk T. Optimal fiber content and distribution in fiber-reinforced solids using a reliability and nurbs based sequential optimization approach. Structural and Multidisciplinary Optimization, 2015, 51(1): 99–112

[22]

Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31

[23]

Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96(PB):520–535

[24]

Msekh M A, Silani M, Jamshidian M, Areias P, Zhuang X, Zi G, He P, Rabczuk T. Predictions of j integral and tensile strength of clay/epoxy nanocomposites material using phase field model. Composites. Part B, Engineering, 2016, 93: 97–114

[25]

Hamdia K M, Zhuang X, He P, Rabczuk T. Fracture toughness of polymeric particle nanocomposites: Evaluation of models performance using bayesian method. Composites Science and Technology, 2016, 126: 122–129

[26]

Ben Dhia H. Multiscale mechanical problems: the arlequin method. Comptes Rendus de l’Academie des Sciences Series IIB Mechanics Physics Astronomy, 1998, 326(12): 899–904

[27]

Dhia H B, Rateau G. The arlequin method as a flexible engineering design tool. International Journal for Numerical Methods in Engineering, 2005, 62(11): 1442–1462

[28]

Xiao S P, Belytschko T. A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering, 2004, 193(17): 1645–1669

[29]

Wagner G J, Liu W K. Coupling of atomistic and continuum simulations using a bridging scale decomposition. Journal of Computational Physics, 2003, 190(1): 249–274

[30]

Tadmor E B, Ortiz M, Phillips R. Quasicontinuum analysis of defects in solids. Philosophical Magazine A, 1996, 73(6): 1529–1563

[31]

Shenoy V B, Miller R, Tadmor E B, Rodney D, Phillips R, Ortiz M. An adaptive finite element approach to atomic-scale mechanicsthe quasicontinuum method. Journal of the Mechanics and Physics of Solids, 1999, 47(3): 611–642

[32]

Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071

[33]

Silani M, Talebi H, Hamouda A M, Rabczuk T. Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. Journal of Computational Science, 2016, 15:18-23

[34]

Budarapu P R, Gracie R, Yang S W, Zhuang X, Rabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143

[35]

Silani M, Ziaei-Rad S, Talebi H, Rabczuk T. A semi-concurrent multiscale approach for modeling damage in nanocomposites. Theoretical and Applied Fracture Mechanics, 2014, 74(1): 30–38

[36]

Talebi H, Silani M, Rabczuk T. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92

[37]

Budarapu P R, Gracie R, Bordas S P A, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148

[38]

Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering, 2013, 11(6): 527–541

[39]

Belytschko T, Moës N, Usui S, Parimi C. Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering, 2001, 50(4): 993–1013

[40]

Sukumar N, Moës N. B Moran, and T Belytschko. Extended finite element method for three-dimensional crack modelling. International Journal for Numerical Methods in Engineering, 2000, 48(11): 1549–1570

[41]

Ghasemi H, Park H S, Rabczuk T. A level-set based iga formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258

[42]

Nanthakumar S S, Valizadeh N, Park H S, Rabczuk T. Surface effects on shape and topology optimization of nanostructures. Computational Mechanics, 2015, 56(1): 97–112

[43]

Chau-Dinh T, Zi G, Lee P S, Rabczuk T, Song J H. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92-93: 242–246

[44]

Kumar S, Singh I V, Mishra B K, Rabczuk T. Modeling and simulation of kinked cracks by virtual node xfem. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 1425–1466

[45]

Chen L, Rabczuk T, Bordas S P A, Liu G R, Zeng K Y, Kerfriden P. Extended finite element method with edge-based strain smoothing (ESM-XFEM) for linear elastic crack growth. Computer Methods in Applied Mechanics and Engineering, 2012, 209-212: 250–265

[46]

Bordas S P A, Natarajan S, Kerfriden P, Augarde C E, Mahapatra D R, Rabczuk T, Pont S D. On the performance of strain smoothing for quadratic and enriched finite element approximations (xfem/gfem/pufem). International Journal for Numerical Methods in Engineering, 2011, 86(4-5): 637–666

[47]

Areias P, Msekh M A, Rabczuk T. Damage and fracture algorithm using the screened poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143

[48]

Rabizadeh E, Saboor Bagherzadeh A, Rabczuk T. Goal-oriented error estimation and adaptive mesh refinement in dynamic coupled thermoelasticity. Computers & Structures, 2016, 173: 187–211

[49]

Areias P, Rabczuk T, Msekh M A. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 322–350

[50]

Areias P, Rabczuk T, de Sá J C. A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement. Computational Mechanics, 2016, 58(6): 1003–1018

[51]

Areias P, Reinoso J, Camanho P, Rabczuk T. A constitutive-based element-by-element crack propagation algorithm with local mesh refinement. Computational Mechanics, 2015, 56(2): 291–315

[52]

Areias P, Rabczuk T, Camanho P P. Finite strain fracture of 2d problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72(1): 50–63

[53]

Areias P, Dias-Da-Costa D, Sargado J M, Rabczuk T. Element-wise algorithm for modeling ductile fracture with the rousselier yield function. Computational Mechanics, 2013, 52(6): 1429–1443

[54]

Areias P, Rabczuk T, Dias-da Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137

[55]

Areias P, Rabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122

[56]

Nguyen-Xuan H, Liu G R, Bordas S, Natarajan S, Rabczuk T. An adaptive singular es-fem for mechanics problems with singular field of arbitrary order. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 252–273

[57]

Rabczuk T, Belytschko T, Xiao S P. Stable particle methods based on lagrangian kernels. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12-14): 1035–1063

[58]

Rabczuk T, Areias P. A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Computer Modeling in Engineering & Sciences, 2006, 16(2): 115–130

[59]

Zi G, Rabczuk T, Wall W. Extended meshfree methods without branch enrichment for cohesive cracks. Computational Mechanics, 2007, 40(2): 367–382

[60]

Rabczuk T, Zi G. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760

[61]

Rabczuk T, Areias P M A, Belytschko T. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548

[62]

Amiri F, Millán D, Arroyo M, Silani M, Rabczuk T. Fourth order phase-field model for local max-ENT approximants applied to crack propagation. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 254–275

[63]

Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109

[64]

Amiri F, Anitescu C, Arroyo M, Bordas S P A, Rabczuk T. Xlme interpolants, a seamless bridge between xfem and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57

[65]

Talebi H, Samaniego C, Samaniego E, Rabczuk T. On the numerical stability and mass-lumping schemes for explicit enriched meshfree methods. International Journal for Numerical Methods in Engineering, 2012, 89(8): 1009–1027

[66]

Rabczuk T, Gracie R, Song J H, Belytschko T. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71

[67]

Nguyen V P, Rabczuk T, Bordas S, Duflot M. Meshless methods: A review and computer implementation aspects. Mathematics and Computers in Simulation, 2008, 79(3): 763–813

[68]

Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A geometrically nonlinear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758

[69]

Ren H, Zhuang X, Cai Y, Rabczuk T. Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 2016, 108(12): 1451–1476

[70]

Rabczuk T, Belytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343

[71]

Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37-40): 2437–2455

[72]

Rabczuk T, Belytschko T. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29-30): 2777–2799

[73]

Nguyen-Thanh N, Valizadeh N, Nguyen M N, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T. An extended isogeometric thin shell analysis based on kirchhoff-love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291

[74]

Ghorashi S S, Valizadeh N, Mohammadi S, Rabczuk T. T-spline based xiga for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146

[75]

Thai T Q, Rabczuk T, Bazilevs Y, Meschke G. A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 584–604

[76]

Chan C L, Anitescu C, Rabczuk T. Volumetric parametrization from a level set boundary representation with pht-splines. CAD Computer Aided Design, 2017, 82: 29–41

[77]

Nguyen V P, Anitescu C, Bordas S P A, Rabczuk T. Isogeometric analysis: An overview and computer implementation aspects. Mathematics and Computers in Simulation, 2015, 117: 89–116

[78]

Thai C H, Ferreira A J M, Bordas S P A, Rabczuk T, Nguyen-Xuan H. Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. European Journal of Mechanics. A, Solids, 2014, 43: 89–108

[79]

Thai C H, Nguyen-Xuan H, Nguyen-Thanh N, Le T H, Nguyen-Thoi T, Rabczuk T. Static, free vibration, and buckling analysis of laminated composite reissner-mindlin plates using nurbs-based isogeometric approach. International Journal for Numerical Methods in Engineering, 2012, 91(6): 571–603

[80]

Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wchner R, Bletzinger K U, Bazilevs Y, Rabczuk T. Rotation free isogeometric thin shell analysis using pht-splines. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47-48): 3410–3424

[81]

Nguyen-Thanh N, Nguyen-Xuan H, Bordas S P A, Rabczuk T. Isogeometric analysis using polynomial splines over hierarchical t-meshes for two-dimensional elastic solids. Computer Methods in Applied Mechanics and Engineering, 2011, 200(21-22): 1892–1908

[82]

Zhuang X, Huang R, Liang C, Rabczuk T. A coupled thermohydro-mechanical model of jointed hard rock for compressed air energy storage. Mathematical Problems in Engineering, 2014, 2014

[83]

Areias P, Rabczuk T, Camanho P P. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics, 2013, 52(4): 931–947

[84]

Frédéric Feyel, Jean-Louis Chaboche. Fe 2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials. Computer Methods in Applied Mechanics and Engineering, 2000, 183(3): 309–330

[85]

Zeng X, Xu X, Prathamesh M. Shenai, Eugene Kovalev, Charles Baudot, Nripan Mathews, and Yang Zhao. Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites. Journal of Physical Chemistry C, 2011, 115(44): 21685–21690

[86]

Belytschko T, Yun Y L, Gu L. Element-free galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229–256

[87]

Belytschko T, Lu Y Y, Gu L, Tabbara M. Element-free galerkin methods for static and dynamic fracture. International Journal of Solids and Structures, 1995, 32(17): 2547–2570

[88]

Zhuang X, Augarde C E, Mathisen K M. Fracture modeling using meshless methods and level sets in 3d: framework and modeling. International Journal for Numerical Methods in Engineering, 2012, 92(11): 969–998

[89]

Zhuang X, Zhu H, Augarde C. An improved mesh-less shepard and least squares method possessing the delta property and requiring no singular weight function. Computational Mechanics, 2014, 53(2): 343–357

[90]

Rabczuk T, Bordas S, Zi G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495

[91]

Bordas S, Rabczuk T, Zi G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Engineering Fracture Mechanics, 2008, 75(5): 943–960

[92]

Rabczuk T, Bordas S, Zi G. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23): 1391–1411

[93]

Song J H, Areias P, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 2006, 67(6): 868–893

[94]

Enderlein M, Ricoeur A, Kuna M. Finite element techniques for dynamic crack analysis in piezoelectrics. International Journal of Fracture, 2005, 134(3-4): 191–208

[95]

Kuna M. Finite element analyses of crack problems in piezoelectric structures. Computational Materials Science, 1998, 13(1): 67–80

[96]

Shang F, Kuna M, Abendroth M. Meinhard Kuna, and Martin Abendroth. Finite element analyses of three-dimensional crack problems in piezoelectric structures. Engineering Fracture Mechanics, 2003, 70(2): 143–160

[97]

Béchet E, Scherzer M, Kuna M. Application of the x-fem to the fracture of piezoelectric materials. International Journal for Numerical Methods in Engineering, 2009, 77(11): 1535–1565

[98]

Nanthakumar S S, Lahmer T, Zhuang X, Zi G, Rabczuk T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 1: 153–176

[99]

Gupta S S, Bosco F G, Batra R C. Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration. Computational Materials Science, 2010, 47(4): 1049–1059

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1917KB)

3094

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/