Application of a vertex chain operation algorithm on topological analysis of three-dimensional fractured rock masses

Zixin ZHANG , Jia WU , Xin HUANG

Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 187 -208.

PDF (3353KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 187 -208. DOI: 10.1007/s11709-017-0391-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Application of a vertex chain operation algorithm on topological analysis of three-dimensional fractured rock masses

Author information +
History +
PDF (3353KB)

Abstract

Identifying the morphology of rock blocks is vital to accurate modelling of rock mass structures. This paper applies the concepts of directed edges and vertex chain operations which are typical for block tracing approach to block assembling approach to construct the structure of three-dimensional fractured rock masses. Polygon subtraction and union algorithms that rely merely on vertex chain operation are proposed, which allow a fast and convenient construction of complex faces/loops. Apart from its robustness in dealing with finite discontinuities and complex geometries, the advantages of the current methodology in tackling some challenging issues associated with the morphological analysis of rock blocks are addressed. In particular, the identification of complex blocks with interior voids such as cavity, pit and torus can be readily achieved based on the number and the type of loops. The improved morphology visualization approach can benefit the pre-processing stage when analyzing the stability of rock masses subject to various engineering impacts using the block theory and the discrete element method.

Keywords

morphology / block assembling / vertex operation / discontinuities

Cite this article

Download citation ▾
Zixin ZHANG, Jia WU, Xin HUANG. Application of a vertex chain operation algorithm on topological analysis of three-dimensional fractured rock masses. Front. Struct. Civ. Eng., 2017, 11(2): 187-208 DOI:10.1007/s11709-017-0391-0

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

The natural rock masses normally contain various discontinuities that are generated subject to the long and complex tectonic history. These discontinuities separate the original intact rocks into many sub-blocks, creating a complex discontinuous system []. In particular, the failure mode of the rock masses is dominated in the forms of block falling, sliding, rotation as well as opening/closure of discontinuities. Therefore, the primary task to evaluate the stability of rock mass subject to engineering disturbances is to determine the topographical structure of the discontinuous system.

Data structure of the method

Vertex class

Fracture class

Elementface class

Elementblock class

Complexface class

Complexblock class

Implementation of an improved morphological visualization method

Identification of element blocks

The above procedure can be illustrated by a simple case shown in Fig. 11: an element block composed of five element faces (F1(V1-V2-V3), F2(V4-V5-V6), F3(V3-V5-V2-V6), F4(V1-V2-V5-V4) and F5(V1-V3-V6-V4)), is cut by a fracture plane which passes through the vertex V2. Fracture plane cutting is performed sequentially from F1 to F5. Assuming that the fracture plane is infinitely large, F1 will be divided into two sub-facesV8-V2-V3 and V1-V7-V8 where V7 and V8 are the two newly-created vertexes. V8-V2-V3 is stored into the UpperElementBlock variable while V1-V7-V8 is stored into the LowerElementBlock variable. F2 is also cut through by the fracture plane generating two new vertexes V9 and V10 , and two sub-faces V9-V5-V6-V10 and V4-V9-V10. V9-V5-V6-V10 is stored into the UpperElementBlock set while V4-V9-V10 is stored into the LowerElementBlock set. F3 has no intersection with the extended fracture plane and thus its vertex series V3-V5-V2-V6 is stored into the UpperBlockElement set as it is above the fracture plane. For F4, two new vertexes V11 and V12 and one UpperElementBlock V11-V5-V12 and one LowerElementBlock V1-V2-V12-V4 are created. Similarly, two new vertexes V13 and V14 and one UpperElementBlock V13-V3-V6-V14 and one LowerElementBlock V1-V13-V14-V4 are generated for F5. Distance calculation identifies four groups of overlapping vertexes: (V2, V7, V11), (V8, V13), (V9, V12) and (V10, V14). These overlapping vertexes are merged into four vertexes, i.e., V2, V7, V8 and V9, respectively and the vertex numbers are updated accordingly in the UpperElementBlock and LowerElementBlock as shown in Fig. 11.

Union-Find of element blocks data

Construction of complex blocks

• secondly, chain the sub vertex lists to get the vertex lists of the complex face. Chaining of the vertex lists starts from the sub vertex lists of the subject polygon in an order of ascending vertex number. The sub vertexes from the clipper polygon and the subject polygon at the common vertexes are alternatively joined until there is no more remaining sub vertex list initiating from the last vertex of the joined vertex list. According to this rule, three vertex lists can be generated. The first joined vertex list starts fromV1-V2-V3 of the subject polygon, becomes V1-V2-V3-V3-V15-V16-V10 after joined with V3-V15-V16-V10 of the clipper polygon and finally becomes V1-V2-V3-V3-V15-V16-V10-V10-V11-V12-V13-V14 after joined with V10-V11-V12-V13-V14 of the subject polygon. This vertex list becomes V1- V2-V3-V15-V16-V10-V11-V12-V13-V14 after removing the repeated common vertexes V3 and V10. The second chained vertex list starts from V4-V5-V6 and becomes V4-V5-V6-V6-V4 after joined with the sub vertex list V6-V4 of the clipper polygon. After removing the repeated common vertexes (V4 and V6), the second vertex list becomes V4-V5-V6. Similarly, we can obtain the third vertex list, which is V7-V8-V9. Note that the first joined vertex list is in an anticlockwise order, while the second and the third vertex lists are in a clockwise order. According to the rule defined for the Complexface Class in Section 2.5, the first joined vertex list will be stored in the OuterLists indicating an outer periphery, while the second and the third vertex lists should be stored in the InnerLists and represent two inner boundaries. The merged complex face is illustrated in Fig. 18 (c) which shows thatV1-V2-V3-V15-V16-V10-V11-V12-V13-V14 is indeed an outer circumference and V4-V5-V6 and V7-V8-V9 are two inner boundaries, indicating that the current algorithm is correct and robust.

Excavation simulation

Validity checking

Application examples

Excavation of a cubic tunnel within jointed rock masses

Excavation of a circular tunnel in jointed rock masses

In engineering practice, the geometry of an excavation can be quite complex. Topologically any shape can be treated as a composition of straight lines in 2D or planar faces in 3D. This rule is employed in the current study. Fig. 24 illustrates an example of identifying the topological feature of complex blocks after excavation of a circular tunnel in jointed rock mass. A cubic analysis domain with a dimension of 50 m×100 m×50 m is created and the geological information of the six boundary planes are listed in Table 5. Three fracture planes exist in the analysis domain and their geological information are given in Table 6. A circular tunnel with a radius of 7 m is directed in they direction through the analysis domain with the tunnel axis originated at the point (25, 0, 25). The procedure of constructing the complex block system is similar to Section 4.1 and is thereby omitted herein. To identify the complex blocks after excavation, the circular tunnel is replaced by a polyhedron composed of 15 planar planes with a stepwise change of 24° in dip angle (see Table 7). The closeness between a polyhedron and a circular tunnel can be improved by increasing the number of planar planes composing the polyhedral. However, by so doing, the computational cost will be increased accordingly as the number of times to evaluate the spatial relationship between element blocks and the excavation planes is proportional to the number of excavation planes. The total volume of the polyhedron is around 14947.5716 m3, which is very close to the total volume of the circular tunnel, i.e., 15393.804 m3. The spatial relationship between the complex blocks identified prior to excavation and the excavation planes was evaluated by considering the spatial relationship between the element blocks comprising each complex block and the excavation planes. In total 15 element blocks were identified after introducing the 15 excavation planes, from which eight complex blocks were identified after removing the element blocks within the excavation area. The geometrical parameters of each complex block after excavation are given in Table 8. The total volume of complex blocks after excavation is 235052.4283 m3, which is almost the same as the difference between the volume of the analysis domain (2.5×105 m3) and the polyhedra. The Euler parameters for each complex block are also listed in Table 8. One can easily check that the Euler-Poincaré formula is satisfied for all the complex blocks.

Conclusions

References

[1]

Lei QWang  X. Tectonic interpretation of the scaling properties of a multiscale fracture system in limestone: structure and connectivity. Geophysical Research Letters201643: 1551–1558

[2]

Warburton P. A computer program for reconstructing blocky rock geometry and analyzing single block stability. Computers & Geosciences198511(6): 707–712

[3]

  Heliot D. Generating a blocky rock mass. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier198825(3): 127–138

[4]

  Lin DFairhurst  CStarfield A . Geometrical identification of three-dimensional rock block systems using topological techniques. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier198724(6): 331–338

[5]

Ikegawa YHudson  J A. A novel automatic identification system for three-dimensional multi-block systems. Engineering Computations19929(2): 169–179

[6]

Jing L. Block system construction for three-dimensional discrete element models of fractured rocks. International Journal of Rock Mechanics and Mining Sciences200037(4): 645–659

[7]

Lu J. Systematic identification of polyhedral rock blocks with arbitrary joints and faults. Computers and Geotechnics200229(1): 49–72

[8]

Elmouttie MKrähenbühl  GPoropat G . Robust algorithms for polyhedral modelling of fractured rock mass structure. Computers and Geotechnics201353: 83–94

[9]

Elmouttie MPoropat  GKrähenbühl G. Polyhedral modelling of rock mass structure. International Journal of Rock Mechanics and Mining Sciences201047(4): 544–552

[10]

Elmouttie MPoropat  GKrähenbühl G. Polyhedral modelling of underground excavations. Computers and Geotechnics201037(4): 529–535

[11]

  Cundall PA . Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier198825(3): 107–116

[12]

  Hart RCundall  PLemos J . Formulation of a three-dimensional distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier198825(3): 117–125

[13]

Yu Q COhnishi  YXue G F Chen D. A generalized procedure to identify three‐dimensional rock blocks around complex excavations. International Journal for Numerical and Snalytical Methods in Geomechanics.200933(3): 355–375

[14]

Zhang YXiao  MChen J . A new methodology for block identification and its application in a large scale underground cavern complex. Tunnelling and Underground Space Technology201025(2): 168–180

[15]

Zhang ZLei  Q. Object-oriented modeling for three-dimensional multi-block systems. Computers and Geotechnics201348: 208–227

[16]

Zhang ZLei  Q. A morphological visualization method for removability analysis of blocks in discontinuous rock masses. Rock Mechanics and Rock Engineering201447(4): 1237–1254

[17]

Wu JZhang  ZKwok C . Stability analysis of rock blocks around a cross-harbor tunnel using the improved morphological visualization method. Engineering Geology2015187: 10–31

[18]

Hao JShi  K BChen  G MBai  X J. Block theory of limited trace lengths and its application to probability analysis of block sliding of surrounding rock. Chinese Journal of Rock Mechanics and Engineering.201433(7): 1471–1477

[19]

Liu X GZhu  H HLiu  X ZWu  W. Improvement of contact detection algorithm of three-dimensional blocks. Chinese Journal of Rock Mechanics and Engineering.201534(3): 489–497

[20]

Bourke P. Calculating the area and centroid of a polygon. 1988. Aavilable online:

[21]

Büeler BEnge  AFukuda K . Exact Volume Computation for Polytopes: A Practical Study. In: Kalai G, Ziegler G, editors. Polytopes — Combinatorics and Computation: Birkhäuser Basel200029(6): 131–154

[22]

  Greiner G Hormann K . Efficient clipping of arbitrary polygons[J]. ACM Transactions on Graphics (TOG)199817(2): 71–83

[23]

Vatti B R. A generic solution to polygon clipping. Communications of the ACM199235(7): 56–63

[24]

Rivero MFeito  F R. Boolean operations on general planar polygons. Computers & Graphics200024(6): 881–896

[25]

Martínez FRueda  A JFeito  F R. A new algorithm for computing Boolean operations on polygons. Computers & Geosciences200935(6): 1177–1185

[26]

  Shi G.Producing joint polygons, cutting joint blocks and finding key blocks for general free surfaces. Chinese Journal of Rock Mechanics and Engineering200625(11): 2161–2170

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (3353KB)

3119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/