Application of a vertex chain operation algorithm on topological analysis of three-dimensional fractured rock masses

Zixin ZHANG, Jia WU, Xin HUANG

PDF(3353 KB)
PDF(3353 KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 187-208. DOI: 10.1007/s11709-017-0391-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Application of a vertex chain operation algorithm on topological analysis of three-dimensional fractured rock masses

Author information +
History +

Abstract

Identifying the morphology of rock blocks is vital to accurate modelling of rock mass structures. This paper applies the concepts of directed edges and vertex chain operations which are typical for block tracing approach to block assembling approach to construct the structure of three-dimensional fractured rock masses. Polygon subtraction and union algorithms that rely merely on vertex chain operation are proposed, which allow a fast and convenient construction of complex faces/loops. Apart from its robustness in dealing with finite discontinuities and complex geometries, the advantages of the current methodology in tackling some challenging issues associated with the morphological analysis of rock blocks are addressed. In particular, the identification of complex blocks with interior voids such as cavity, pit and torus can be readily achieved based on the number and the type of loops. The improved morphology visualization approach can benefit the pre-processing stage when analyzing the stability of rock masses subject to various engineering impacts using the block theory and the discrete element method.

Keywords

morphology / block assembling / vertex operation / discontinuities

Cite this article

Download citation ▾
Zixin ZHANG, Jia WU, Xin HUANG. Application of a vertex chain operation algorithm on topological analysis of three-dimensional fractured rock masses. Front. Struct. Civ. Eng., 2017, 11(2): 187‒208 https://doi.org/10.1007/s11709-017-0391-0

References

[1]
Lei Q, Wang  X. Tectonic interpretation of the scaling properties of a multiscale fracture system in limestone: structure and connectivity. Geophysical Research Letters, 2016, 43: 1551–1558
CrossRef Google scholar
[2]
Warburton P. A computer program for reconstructing blocky rock geometry and analyzing single block stability. Computers & Geosciences, 1985, 11(6): 707–712
CrossRef Google scholar
[3]
  Heliot D. Generating a blocky rock mass. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier; 1988, 25(3): 127–138
[4]
  Lin D, Fairhurst  C, Starfield A . Geometrical identification of three-dimensional rock block systems using topological techniques. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier; 1987, 24(6): 331–338
[5]
Ikegawa Y, Hudson  J A. A novel automatic identification system for three-dimensional multi-block systems. Engineering Computations, 1992, 9(2): 169–179
CrossRef Google scholar
[6]
Jing L. Block system construction for three-dimensional discrete element models of fractured rocks. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 645–659
CrossRef Google scholar
[7]
Lu J. Systematic identification of polyhedral rock blocks with arbitrary joints and faults. Computers and Geotechnics, 2002, 29(1): 49–72
CrossRef Google scholar
[8]
Elmouttie M, Krähenbühl  G, Poropat G . Robust algorithms for polyhedral modelling of fractured rock mass structure. Computers and Geotechnics, 2013, 53: 83–94
CrossRef Google scholar
[9]
Elmouttie M, Poropat  G, Krähenbühl G. Polyhedral modelling of rock mass structure. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(4): 544–552
CrossRef Google scholar
[10]
Elmouttie M, Poropat  G, Krähenbühl G. Polyhedral modelling of underground excavations. Computers and Geotechnics, 2010, 37(4): 529–535
CrossRef Google scholar
[11]
  Cundall PA . Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier; 1988, 25(3): 107–116
[12]
  Hart R, Cundall  P, Lemos J . Formulation of a three-dimensional distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier; 1988, 25(3): 117–125
[13]
Yu Q C, Ohnishi  Y, Xue G F ,  Chen D. A generalized procedure to identify three‐dimensional rock blocks around complex excavations. International Journal for Numerical and Snalytical Methods in Geomechanics., 2009, 33(3): 355–375
CrossRef Google scholar
[14]
Zhang Y, Xiao  M, Chen J . A new methodology for block identification and its application in a large scale underground cavern complex. Tunnelling and Underground Space Technology, 2010, 25(2): 168–180
CrossRef Google scholar
[15]
Zhang Z, Lei  Q. Object-oriented modeling for three-dimensional multi-block systems. Computers and Geotechnics, 2013, 48: 208–227
CrossRef Google scholar
[16]
Zhang Z, Lei  Q. A morphological visualization method for removability analysis of blocks in discontinuous rock masses. Rock Mechanics and Rock Engineering, 2014, 47(4): 1237–1254
CrossRef Google scholar
[17]
Wu J, Zhang  Z, Kwok C . Stability analysis of rock blocks around a cross-harbor tunnel using the improved morphological visualization method. Engineering Geology, 2015, 187: 10–31
CrossRef Google scholar
[18]
Hao J, Shi  K B, Chen  G M, Bai  X J. Block theory of limited trace lengths and its application to probability analysis of block sliding of surrounding rock. Chinese Journal of Rock Mechanics and Engineering., 2014, 33(7): 1471–1477
[19]
Liu X G, Zhu  H H, Liu  X Z, Wu  W. Improvement of contact detection algorithm of three-dimensional blocks. Chinese Journal of Rock Mechanics and Engineering., 2015, 34(3): 489–497
[20]
Bourke P. Calculating the area and centroid of a polygon. 1988. Aavilable online: http:// astronomy.swin.edu.au/~pbourke/geometry/polyarea
[21]
Büeler B, Enge  A, Fukuda K . Exact Volume Computation for Polytopes: A Practical Study. In: Kalai G, Ziegler G, editors. Polytopes — Combinatorics and Computation: Birkhäuser Basel; 2000, 29(6): 131–154
[22]
  Greiner G ,  Hormann K . Efficient clipping of arbitrary polygons[J]. ACM Transactions on Graphics (TOG), 1998, 17(2): 71–83
[23]
Vatti B R. A generic solution to polygon clipping. Communications of the ACM, 1992, 35(7): 56–63
CrossRef Google scholar
[24]
Rivero M, Feito  F R. Boolean operations on general planar polygons. Computers & Graphics, 2000, 24(6): 881–896
CrossRef Google scholar
[25]
Martínez F, Rueda  A J, Feito  F R. A new algorithm for computing Boolean operations on polygons. Computers & Geosciences, 2009, 35(6): 1177–1185
CrossRef Google scholar
[26]
  Shi G.Producing joint polygons, cutting joint blocks and finding key blocks for general free surfaces. Chinese Journal of Rock Mechanics and Engineering. 2006, 25(11): 2161–2170

Acknowledgement

The research was conducted with funding provided by the National Basic Research Program of China (973 program, No.2014CB046905), the National Science Foundation of China (Grant No. 41672262), the State Key Laboratory for Geo mechanics and Deep Underground Engineering (No.SKLGDUEK1303), and the Department of Communications of Guangdong Province (No.2016).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(3353 KB)

Accesses

Citations

Detail

Sections
Recommended

/