Application of a vertex chain operation algorithm on topological analysis of three-dimensional fractured rock masses

Zixin ZHANG , Jia WU , Xin HUANG

Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 187 -208.

PDF (3353KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 187 -208. DOI: 10.1007/s11709-017-0391-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Application of a vertex chain operation algorithm on topological analysis of three-dimensional fractured rock masses

Author information +
History +
PDF (3353KB)

Abstract

Identifying the morphology of rock blocks is vital to accurate modelling of rock mass structures. This paper applies the concepts of directed edges and vertex chain operations which are typical for block tracing approach to block assembling approach to construct the structure of three-dimensional fractured rock masses. Polygon subtraction and union algorithms that rely merely on vertex chain operation are proposed, which allow a fast and convenient construction of complex faces/loops. Apart from its robustness in dealing with finite discontinuities and complex geometries, the advantages of the current methodology in tackling some challenging issues associated with the morphological analysis of rock blocks are addressed. In particular, the identification of complex blocks with interior voids such as cavity, pit and torus can be readily achieved based on the number and the type of loops. The improved morphology visualization approach can benefit the pre-processing stage when analyzing the stability of rock masses subject to various engineering impacts using the block theory and the discrete element method.

Keywords

morphology / block assembling / vertex operation / discontinuities

Cite this article

Download citation ▾
Zixin ZHANG, Jia WU, Xin HUANG. Application of a vertex chain operation algorithm on topological analysis of three-dimensional fractured rock masses. Front. Struct. Civ. Eng., 2017, 11(2): 187-208 DOI:10.1007/s11709-017-0391-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lei QWang  X. Tectonic interpretation of the scaling properties of a multiscale fracture system in limestone: structure and connectivity. Geophysical Research Letters201643: 1551–1558

[2]

Warburton P. A computer program for reconstructing blocky rock geometry and analyzing single block stability. Computers & Geosciences198511(6): 707–712

[3]

  Heliot D. Generating a blocky rock mass. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier198825(3): 127–138

[4]

  Lin DFairhurst  CStarfield A . Geometrical identification of three-dimensional rock block systems using topological techniques. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier198724(6): 331–338

[5]

Ikegawa YHudson  J A. A novel automatic identification system for three-dimensional multi-block systems. Engineering Computations19929(2): 169–179

[6]

Jing L. Block system construction for three-dimensional discrete element models of fractured rocks. International Journal of Rock Mechanics and Mining Sciences200037(4): 645–659

[7]

Lu J. Systematic identification of polyhedral rock blocks with arbitrary joints and faults. Computers and Geotechnics200229(1): 49–72

[8]

Elmouttie MKrähenbühl  GPoropat G . Robust algorithms for polyhedral modelling of fractured rock mass structure. Computers and Geotechnics201353: 83–94

[9]

Elmouttie MPoropat  GKrähenbühl G. Polyhedral modelling of rock mass structure. International Journal of Rock Mechanics and Mining Sciences201047(4): 544–552

[10]

Elmouttie MPoropat  GKrähenbühl G. Polyhedral modelling of underground excavations. Computers and Geotechnics201037(4): 529–535

[11]

  Cundall PA . Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier198825(3): 107–116

[12]

  Hart RCundall  PLemos J . Formulation of a three-dimensional distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier198825(3): 117–125

[13]

Yu Q COhnishi  YXue G F Chen D. A generalized procedure to identify three‐dimensional rock blocks around complex excavations. International Journal for Numerical and Snalytical Methods in Geomechanics.200933(3): 355–375

[14]

Zhang YXiao  MChen J . A new methodology for block identification and its application in a large scale underground cavern complex. Tunnelling and Underground Space Technology201025(2): 168–180

[15]

Zhang ZLei  Q. Object-oriented modeling for three-dimensional multi-block systems. Computers and Geotechnics201348: 208–227

[16]

Zhang ZLei  Q. A morphological visualization method for removability analysis of blocks in discontinuous rock masses. Rock Mechanics and Rock Engineering201447(4): 1237–1254

[17]

Wu JZhang  ZKwok C . Stability analysis of rock blocks around a cross-harbor tunnel using the improved morphological visualization method. Engineering Geology2015187: 10–31

[18]

Hao JShi  K BChen  G MBai  X J. Block theory of limited trace lengths and its application to probability analysis of block sliding of surrounding rock. Chinese Journal of Rock Mechanics and Engineering.201433(7): 1471–1477

[19]

Liu X GZhu  H HLiu  X ZWu  W. Improvement of contact detection algorithm of three-dimensional blocks. Chinese Journal of Rock Mechanics and Engineering.201534(3): 489–497

[20]

Bourke P. Calculating the area and centroid of a polygon. 1988. Aavilable online:

[21]

Büeler BEnge  AFukuda K . Exact Volume Computation for Polytopes: A Practical Study. In: Kalai G, Ziegler G, editors. Polytopes — Combinatorics and Computation: Birkhäuser Basel200029(6): 131–154

[22]

  Greiner G Hormann K . Efficient clipping of arbitrary polygons[J]. ACM Transactions on Graphics (TOG)199817(2): 71–83

[23]

Vatti B R. A generic solution to polygon clipping. Communications of the ACM199235(7): 56–63

[24]

Rivero MFeito  F R. Boolean operations on general planar polygons. Computers & Graphics200024(6): 881–896

[25]

Martínez FRueda  A JFeito  F R. A new algorithm for computing Boolean operations on polygons. Computers & Geosciences200935(6): 1177–1185

[26]

  Shi G.Producing joint polygons, cutting joint blocks and finding key blocks for general free surfaces. Chinese Journal of Rock Mechanics and Engineering200625(11): 2161–2170

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (3353KB)

3079

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/