Mechanical properties of rock materials with related to mineralogical characteristics and grain size through experimental investigation: a comprehensive review

Wenjuan SUN, Linbing WANG, Yaqiong WANG

PDF(124 KB)
PDF(124 KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 322-328. DOI: 10.1007/s11709-017-0387-9
REVIEW
REVIEW

Mechanical properties of rock materials with related to mineralogical characteristics and grain size through experimental investigation: a comprehensive review

Author information +
History +

Abstract

Mechanical properties of rock materials are related to textural characteristics. The relationships between mechanical properties and textural characteristics have been extensively investigated for differently types of rocks through experimental tests. Based on the experimental test data, single- and multiple- variant regression analyses are conducted among mechanical properties and textural characteristics. Textural characteristics of rock materials are influenced by the following factors: mineral composition, size, shape, and spatial distribution of mineral grains, porosity, and inherent microcracks. This study focuses on the first two: mineral composition and grain size. ƒ

This study comprehensively summarizes the regression equations between mechanical properties and mineral content and the regression equations between mechanical properties and grain size. Further research directions are suggested at the end of this study.

Keywords

Mechanical properties / rock material / texture / mineral characteristics

Cite this article

Download citation ▾
Wenjuan SUN, Linbing WANG, Yaqiong WANG. Mechanical properties of rock materials with related to mineralogical characteristics and grain size through experimental investigation: a comprehensive review. Front. Struct. Civ. Eng., 2017, 11(3): 322‒328 https://doi.org/10.1007/s11709-017-0387-9

References

[1]
Räisänen M ,  Kupiainen K ,  Tervahattu H . The effect of mineralogy, texture and mechanical properties of anti-skid and asphalt aggregates on urban dust. Bulletin of Engineering Geology and the Environment, 2003, 62(4): 359–368
CrossRef Google scholar
[2]
Hou Y, Wang  L, Yue P ,  Pauli T ,  Sun W. Modeling Mode I Cracking Failure in Asphalt Binder by Using Nonconserved Phase-Field Model. Journal of Materials in Civil Engineering, 2014, 26(4): 684–691
CrossRef Google scholar
[3]
HouY, SunW, HuangY, Ayatollahi MR, WangL , ZhangJ. Diffuse Interface Model to Investigate the Asphalt Concrete Cracking Subjected to Shear Loading at Low Temperature.Journal of Cold Regions Engineering, 2016, 31(3): 04016009.
[4]
United States Geological Survey (USGS). USGS Minerals Information: Crushed Stone. http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/mcs-2014-stonc.pdf, Retrieved 2014-8-11.
[5]
Little D, Button  J, Jayawickrama P,  Solaimanian M , and  Hudson B.  Uantify shape, angularity and surface texture of aggregates using image nalaysis and study their effect on performance. FHWA/TX-06/0-1707-4, 2003
[6]
Liu H, Kou  S, Lindqvist P.-A. ,  Lindqvist J.E. , and  Akesson U . Microscope rock texture characterization and simulation of rock aggregate properties. SGU project 60-1362/2004, 2005
[7]
Ozturk C A, Nasuf  E, Kahraman S . Estimation of rock strength from quantitative assessment of rock texture. Journal of the South African Institute of Mining and Metallurgy, 2014, 114: 471–480
[8]
Howarth D F, Rowlands  J C. Development of an index to quantify rock texture for qualitative assessment of intact rock properties. Geotechnical Testing Journal, 1986, 9(4): 169–179
CrossRef Google scholar
[9]
SunW, WeiY, WangD, Wang L. Review of Multiscale Characterization Techniques and Multiscale Modeling Methods for Cement Concrete: From Atomistic to Continuum.Multi-Scale Modeling and Characterization of Infrastructure Materials, 2013, 8: 325–341.
[10]
YusofNQAM, ZabidiH. Correlation of Mineralogical and Textural Characteristics with Engineering Properties of Granitic Rock from Hulu Langat, Selangor.Procedia Chemistry, 2016, 19: 975–980.
[11]
Hugman R H H ,  Friedman M . Effect of texture and composition on mechanical behaviour of experimentally deformed carbonate rocks. American Association of Petroleum Geologists Bulletin, 1979, 63(9): 1478–1489
[12]
Brattli B. The influence of geological factors on the mechanical properties of basic igneous rocks used as road surface aggregates. Engineering Geology, 1992, 33(1): 31–44
CrossRef Google scholar
[13]
Lundqvist S, Göransson  M. Evaluation and interpretation of microscopic parameters vs. mechanical properties of Precambrian rocks from the Stockholm region, Sweden. Proceedings of the 8th Euroseminar Applied to Building Materials, Athens, 13–20, 2001
[14]
Räisänen M . Relationships between texture and mechanical properties of hybrid rocks from the Jaala–Iitti complex, southeastern Finland. Engineering Geology, 2004, 74(3-4): 197–211
CrossRef Google scholar
[15]
Miskovsky K, Duarte  M K, Kou  S Q, Lindqvist  P A. Influence of the mineralogical composition and textural properties on the quality of coarse aggregates. Journal of Materials Engineering and Performance, 2004, 13(2): 144–150
CrossRef Google scholar
[16]
Erichsen E, Ulvik  A, Wolden K ,  Neeb P R . Aggregates in Norway—Properties defining the quality of sand, gravel and hard rock for use as aggregate for building purposes. In Slagstad, T. (ed.) Geology for Society, Geological Survey of Norway, Special Publication, 2008, 11, 37–46.
[17]
Ündül O. Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks. Engineering Geology, 2016, 210: 10–22
CrossRef Google scholar
[18]
Merriam R, Rieke  H H III, Kim  Y C. Tensile strength related to mineralogy and texture of some granitic rocks. Engineering Geology, 1970, 4(2): 155–160
CrossRef Google scholar
[19]
Gunsallus K L ,  Kulhawy F H . A comparative evaluation of rock strength measurements. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984, 21(5): 233–248
CrossRef Google scholar
[20]
Tuğrul A, Zarif  I H. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Engineering Geology, 1999, 51(4): 303–317
CrossRef Google scholar
[21]
Bell F G. The physical and mechanical properties of the Fell Sandstones, Northumberland, England. Engineering Geology, 1978, 12: 1–29
CrossRef Google scholar
[22]
Fahy M P, Guccione  M J. Estimating the strength of sandstone using petrographic thin section data. Bull. Int. Assoc. Eng. Geol., 1979, 16(4): 467–485
[23]
Shakoor A, Bonelli  R E. Relationship between petrographic characteristics, engineering index properties, and mechanical properties of selected sandstone. Bull. Int. Assoc. Eng. Geol., 1991, XXVIII(1): 55–71
[24]
Åkesson U, Stigh  J, Lindqvist J E ,  Göransson M . The influence of foliation on the fragility of granitic rocks, image analysis and quantitative microscopy. Engineering Geology, 2003, 68(3–4): 275–288
CrossRef Google scholar
[25]
Yusof N Q A M ,  Zabidi H . Correlation of mineralogical and textural characteristics with engineering properties of granitic rock from Hulu Langat, Selangor. Procedia Chemistry, 2016, 19: 975–980
CrossRef Google scholar
[26]
Sousa L M O . The influence of the characteristics of quartz and mineral deterioration on the strength of granitic dimensional stones. Environmental Earth Sciences, 2013, 69(4): 1333–1346
CrossRef Google scholar
[27]
Brace W F. “Dependence of fracture strength of rocks on grain size.” Bulletin of Mineral Industries Experiment Station, Mining Engineering Series. Rock Mechanics, 1961, 76: 99–103
[28]
Mendes F M, Aires-Barros  L, Rodrigues F P . The use of modal analysis in the mechanical characterization of rock masses. In: Proc 1st Int. Cong. Rock Mech. Lisbon, 1966, 1, 217–223.
[29]
Willard R J, McWilliams  J R. Microstructural techniques in the study of physical properties of rocks. International Journal of Rock Mechanics and Mining Sciences, 1969, 6(1): 1–12
CrossRef Google scholar
[30]
Wong R H C ,  Chau K T ,  Wang P. Microcracking and grain size effect in Yuen Long marbles. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33(5): 479–485
CrossRef Google scholar
[31]
Olsson W A. Grain size dependence of yield stress in marble. Journal of Geophysical Research, 1974, 79(32): 4859–4862
CrossRef Google scholar
[32]
Přikryl R. Some microstructural aspects of strength variation in rocks. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(5): 671–682
CrossRef Google scholar
[33]
Hareland G, Polston  C E, White  W E. Normalized rock failure envelope as a function of rock grain size. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 715–717
CrossRef Google scholar
[34]
Onodera T F, Asoka  K H M. Relationship between texture and mechanical properties of crystalline rocks. Bull Int Assoc Eng Geol, 1980, 22: 173–177
[35]
French W J, Kermani  S, Mole C F . Petrographic evaluation of aggregate parameters. In: Proceeding of the 8th Euroseminar on microscopy applied to building materials, Athens, 2001, 557–564.
[36]
Åkesson U, Lindqvist  J E, Göransson  M, Stigh J . Relationship between texture and mechanical properties of granites, central Sweden, by use of image-analysing technique. Bulletin of Engineering Geology and the Environment, 2001, 60(4): 277–284
CrossRef Google scholar
[37]
Hatzor Y H, Zur  A, Mimran Y . Microstructure effects on microcracking and brittle failure of dolomites. Tectonophysics, 1997, 281(3–4): 141–161 
CrossRef Google scholar
[38]
Eberhardt E, Stimpson  B, Stead D . Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures. Rock Mechanics and Rock Engineering, 1999, 32(2): 81–99
CrossRef Google scholar
[39]
Irfan T Y, Dearman  W R. Engineering classification and index properties of a weathered granite. Bulletin of the International Association of Engineering and Geology, 1978, 17(1): 79–90
CrossRef Google scholar
[40]
Hecht C A, Bönsch  C, Bauch E . Relations of rock structure and composition to petrophysical and geomechanical rock properties: examples from Permocarboniferous red-beds. Rock Mechanics and Rock Engineering, 2005, 38(3): 197–216
CrossRef Google scholar
[41]
Howarth D F, Rowlands  J C. Quantitative assessment of rock texture and correlation with drillability and strength properties. Rock Mechanics and Rock Engineering, 1987, 20(1): 57–85
CrossRef Google scholar
[42]
Ersoy A, Waller  M D. Textural characterization of rocks. Engineering Geology, 1995, 39(3–4): 123–136
CrossRef Google scholar
[43]
Azzoni A, Bailo  F, Rondena E ,  Zaninetti A . Assessment of texture coefficient for different rock types and correlation with uniaxial compressive strength and rock weathering. Rock Mechanics and Rock Engineering, 1996, 29(1): 39–46
CrossRef Google scholar
[44]
Ozturk C A, Nasurf  E, Bilgin N . The assessment of rock cutability, and physical and mechanical rock properties from a texture coefficient. Journal of the South African Institute of Mining and Metallurgy, 2004, 7: 397–403
[45]
Přikryl R. Assessment of rock geomechanical quality by quantitative rock fabric coefficients: Limitations and possible source of misinterpretations. Engineering Geology, 2006, 87(3): 149–162
CrossRef Google scholar
[46]
Alber M, Kahraman  S. Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from texture coefficient. Rock Mechanics and Rock Engineering, 2009, 42(1): 117–127
CrossRef Google scholar

Acknowledgement

The research performed in this paper was supported by Special Fund for Basic Scientific Research of Central Colleges (Funding No.: 310821151114), and Open Fund of State Key Laboratory of Disaster Reduction in Civil Engineering (SLDRCE15-03). The financial support is greatly appreciated. The authors also want to thank anonymous reviewers for their comments and suggestions.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(124 KB)

Accesses

Citations

Detail

Sections
Recommended

/