Mechanical properties of rock materials with related to mineralogical characteristics and grain size through experimental investigation: a comprehensive review
Wenjuan SUN, Linbing WANG, Yaqiong WANG
Mechanical properties of rock materials with related to mineralogical characteristics and grain size through experimental investigation: a comprehensive review
Mechanical properties of rock materials are related to textural characteristics. The relationships between mechanical properties and textural characteristics have been extensively investigated for differently types of rocks through experimental tests. Based on the experimental test data, single- and multiple- variant regression analyses are conducted among mechanical properties and textural characteristics. Textural characteristics of rock materials are influenced by the following factors: mineral composition, size, shape, and spatial distribution of mineral grains, porosity, and inherent microcracks. This study focuses on the first two: mineral composition and grain size.
This study comprehensively summarizes the regression equations between mechanical properties and mineral content and the regression equations between mechanical properties and grain size. Further research directions are suggested at the end of this study.
Mechanical properties / rock material / texture / mineral characteristics
[1] |
Räisänen M , Kupiainen K , Tervahattu H . The effect of mineralogy, texture and mechanical properties of anti-skid and asphalt aggregates on urban dust. Bulletin of Engineering Geology and the Environment, 2003, 62(4): 359–368
CrossRef
Google scholar
|
[2] |
Hou Y, Wang L, Yue P , Pauli T , Sun W. Modeling Mode I Cracking Failure in Asphalt Binder by Using Nonconserved Phase-Field Model. Journal of Materials in Civil Engineering, 2014, 26(4): 684–691
CrossRef
Google scholar
|
[3] |
HouY, SunW, HuangY, Ayatollahi MR, WangL , ZhangJ. Diffuse Interface Model to Investigate the Asphalt Concrete Cracking Subjected to Shear Loading at Low Temperature.Journal of Cold Regions Engineering, 2016, 31(3): 04016009.
|
[4] |
United States Geological Survey (USGS). USGS Minerals Information: Crushed Stone. http://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/mcs-2014-stonc.pdf, Retrieved 2014-8-11.
|
[5] |
Little D, Button J, Jayawickrama P, Solaimanian M , and Hudson B. Uantify shape, angularity and surface texture of aggregates using image nalaysis and study their effect on performance. FHWA/TX-06/0-1707-4, 2003
|
[6] |
Liu H, Kou S, Lindqvist P.-A. , Lindqvist J.E. , and Akesson U . Microscope rock texture characterization and simulation of rock aggregate properties. SGU project 60-1362/2004, 2005
|
[7] |
Ozturk C A, Nasuf E, Kahraman S . Estimation of rock strength from quantitative assessment of rock texture. Journal of the South African Institute of Mining and Metallurgy, 2014, 114: 471–480
|
[8] |
Howarth D F, Rowlands J C. Development of an index to quantify rock texture for qualitative assessment of intact rock properties. Geotechnical Testing Journal, 1986, 9(4): 169–179
CrossRef
Google scholar
|
[9] |
SunW, WeiY, WangD, Wang L. Review of Multiscale Characterization Techniques and Multiscale Modeling Methods for Cement Concrete: From Atomistic to Continuum.Multi-Scale Modeling and Characterization of Infrastructure Materials, 2013, 8: 325–341.
|
[10] |
YusofNQAM, ZabidiH. Correlation of Mineralogical and Textural Characteristics with Engineering Properties of Granitic Rock from Hulu Langat, Selangor.Procedia Chemistry, 2016, 19: 975–980.
|
[11] |
Hugman R H H , Friedman M . Effect of texture and composition on mechanical behaviour of experimentally deformed carbonate rocks. American Association of Petroleum Geologists Bulletin, 1979, 63(9): 1478–1489
|
[12] |
Brattli B. The influence of geological factors on the mechanical properties of basic igneous rocks used as road surface aggregates. Engineering Geology, 1992, 33(1): 31–44
CrossRef
Google scholar
|
[13] |
Lundqvist S, Göransson M. Evaluation and interpretation of microscopic parameters vs. mechanical properties of Precambrian rocks from the Stockholm region, Sweden. Proceedings of the 8th Euroseminar Applied to Building Materials, Athens, 13–20, 2001
|
[14] |
Räisänen M . Relationships between texture and mechanical properties of hybrid rocks from the Jaala–Iitti complex, southeastern Finland. Engineering Geology, 2004, 74(3-4): 197–211
CrossRef
Google scholar
|
[15] |
Miskovsky K, Duarte M K, Kou S Q, Lindqvist P A. Influence of the mineralogical composition and textural properties on the quality of coarse aggregates. Journal of Materials Engineering and Performance, 2004, 13(2): 144–150
CrossRef
Google scholar
|
[16] |
Erichsen E, Ulvik A, Wolden K , Neeb P R . Aggregates in Norway—Properties defining the quality of sand, gravel and hard rock for use as aggregate for building purposes. In Slagstad, T. (ed.) Geology for Society, Geological Survey of Norway, Special Publication, 2008, 11, 37–46.
|
[17] |
Ündül O. Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks. Engineering Geology, 2016, 210: 10–22
CrossRef
Google scholar
|
[18] |
Merriam R, Rieke H H III, Kim Y C. Tensile strength related to mineralogy and texture of some granitic rocks. Engineering Geology, 1970, 4(2): 155–160
CrossRef
Google scholar
|
[19] |
Gunsallus K L , Kulhawy F H . A comparative evaluation of rock strength measurements. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984, 21(5): 233–248
CrossRef
Google scholar
|
[20] |
Tuğrul A, Zarif I H. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Engineering Geology, 1999, 51(4): 303–317
CrossRef
Google scholar
|
[21] |
Bell F G. The physical and mechanical properties of the Fell Sandstones, Northumberland, England. Engineering Geology, 1978, 12: 1–29
CrossRef
Google scholar
|
[22] |
Fahy M P, Guccione M J. Estimating the strength of sandstone using petrographic thin section data. Bull. Int. Assoc. Eng. Geol., 1979, 16(4): 467–485
|
[23] |
Shakoor A, Bonelli R E. Relationship between petrographic characteristics, engineering index properties, and mechanical properties of selected sandstone. Bull. Int. Assoc. Eng. Geol., 1991, XXVIII(1): 55–71
|
[24] |
Åkesson U, Stigh J, Lindqvist J E , Göransson M . The influence of foliation on the fragility of granitic rocks, image analysis and quantitative microscopy. Engineering Geology, 2003, 68(3–4): 275–288
CrossRef
Google scholar
|
[25] |
Yusof N Q A M , Zabidi H . Correlation of mineralogical and textural characteristics with engineering properties of granitic rock from Hulu Langat, Selangor. Procedia Chemistry, 2016, 19: 975–980
CrossRef
Google scholar
|
[26] |
Sousa L M O . The influence of the characteristics of quartz and mineral deterioration on the strength of granitic dimensional stones. Environmental Earth Sciences, 2013, 69(4): 1333–1346
CrossRef
Google scholar
|
[27] |
Brace W F. “Dependence of fracture strength of rocks on grain size.” Bulletin of Mineral Industries Experiment Station, Mining Engineering Series. Rock Mechanics, 1961, 76: 99–103
|
[28] |
Mendes F M, Aires-Barros L, Rodrigues F P . The use of modal analysis in the mechanical characterization of rock masses. In: Proc 1st Int. Cong. Rock Mech. Lisbon, 1966, 1, 217–223.
|
[29] |
Willard R J, McWilliams J R. Microstructural techniques in the study of physical properties of rocks. International Journal of Rock Mechanics and Mining Sciences, 1969, 6(1): 1–12
CrossRef
Google scholar
|
[30] |
Wong R H C , Chau K T , Wang P. Microcracking and grain size effect in Yuen Long marbles. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33(5): 479–485
CrossRef
Google scholar
|
[31] |
Olsson W A. Grain size dependence of yield stress in marble. Journal of Geophysical Research, 1974, 79(32): 4859–4862
CrossRef
Google scholar
|
[32] |
Přikryl R. Some microstructural aspects of strength variation in rocks. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(5): 671–682
CrossRef
Google scholar
|
[33] |
Hareland G, Polston C E, White W E. Normalized rock failure envelope as a function of rock grain size. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 715–717
CrossRef
Google scholar
|
[34] |
Onodera T F, Asoka K H M. Relationship between texture and mechanical properties of crystalline rocks. Bull Int Assoc Eng Geol, 1980, 22: 173–177
|
[35] |
French W J, Kermani S, Mole C F . Petrographic evaluation of aggregate parameters. In: Proceeding of the 8th Euroseminar on microscopy applied to building materials, Athens, 2001, 557–564.
|
[36] |
Åkesson U, Lindqvist J E, Göransson M, Stigh J . Relationship between texture and mechanical properties of granites, central Sweden, by use of image-analysing technique. Bulletin of Engineering Geology and the Environment, 2001, 60(4): 277–284
CrossRef
Google scholar
|
[37] |
Hatzor Y H, Zur A, Mimran Y . Microstructure effects on microcracking and brittle failure of dolomites. Tectonophysics, 1997, 281(3–4): 141–161
CrossRef
Google scholar
|
[38] |
Eberhardt E, Stimpson B, Stead D . Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures. Rock Mechanics and Rock Engineering, 1999, 32(2): 81–99
CrossRef
Google scholar
|
[39] |
Irfan T Y, Dearman W R. Engineering classification and index properties of a weathered granite. Bulletin of the International Association of Engineering and Geology, 1978, 17(1): 79–90
CrossRef
Google scholar
|
[40] |
Hecht C A, Bönsch C, Bauch E . Relations of rock structure and composition to petrophysical and geomechanical rock properties: examples from Permocarboniferous red-beds. Rock Mechanics and Rock Engineering, 2005, 38(3): 197–216
CrossRef
Google scholar
|
[41] |
Howarth D F, Rowlands J C. Quantitative assessment of rock texture and correlation with drillability and strength properties. Rock Mechanics and Rock Engineering, 1987, 20(1): 57–85
CrossRef
Google scholar
|
[42] |
Ersoy A, Waller M D. Textural characterization of rocks. Engineering Geology, 1995, 39(3–4): 123–136
CrossRef
Google scholar
|
[43] |
Azzoni A, Bailo F, Rondena E , Zaninetti A . Assessment of texture coefficient for different rock types and correlation with uniaxial compressive strength and rock weathering. Rock Mechanics and Rock Engineering, 1996, 29(1): 39–46
CrossRef
Google scholar
|
[44] |
Ozturk C A, Nasurf E, Bilgin N . The assessment of rock cutability, and physical and mechanical rock properties from a texture coefficient. Journal of the South African Institute of Mining and Metallurgy, 2004, 7: 397–403
|
[45] |
Přikryl R. Assessment of rock geomechanical quality by quantitative rock fabric coefficients: Limitations and possible source of misinterpretations. Engineering Geology, 2006, 87(3): 149–162
CrossRef
Google scholar
|
[46] |
Alber M, Kahraman S. Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from texture coefficient. Rock Mechanics and Rock Engineering, 2009, 42(1): 117–127
CrossRef
Google scholar
|
/
〈 | 〉 |