Investigation on the performance and detoxification of modified low temperature coal tar pitch

Fengyan SUN, Yu LIU

PDF(1021 KB)
PDF(1021 KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 315-321. DOI: 10.1007/s11709-017-0386-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Investigation on the performance and detoxification of modified low temperature coal tar pitch

Author information +
History +

Abstract

In this paper, studies on the modification on the low temperature coal tar pitch extracted from coal tar residue in Inner Mongolia are conducted. First, the low temperature coal tar pitch in liquid state is solidified with a higher softening point by chemical crosslinking modification. The modified coal tar pitch can achieve the standard pavement performance requirements. Then, the effects of chemical crosslinking agent and physical modification additives on the mechanical performance and toxic properties of coal tar pitch are investigated. The detoxification mechanism is also studied, which further promote the applicability of modified low temperature coal tar pitch in the pavement constructions.

Keywords

coal tar pitch / low temperature / modification / detoxification

Cite this article

Download citation ▾
Fengyan SUN, Yu LIU. Investigation on the performance and detoxification of modified low temperature coal tar pitch. Front. Struct. Civ. Eng., 2017, 11(3): 315‒321 https://doi.org/10.1007/s11709-017-0386-x

References

[1]
Zubkova V. Influence of polyethylene terephthalate on the carbonisation of bituminous coals and on the modification of their electric and dielectric properties. Fuel, 2006, 85(12): 1652–1665
CrossRef Google scholar
[2]
Zhang L, Liu G, Wang Y, Shen J, Li R, Du J, Yang Z, Xu Q. Modification of coal tar pitch with P-phthalaldehyde to reduce toxic PAH content. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2016, 38(5): 737–743
CrossRef Google scholar
[3]
Stompeil x, y, Z, and Collin g, Szen a. Koks smola Gaz, 1998,33 (L): 24
[4]
Li Q, Bai H, Zhang J, Fang H, Wang G, Xiang D. Comparison of SBS and EVA in modifying carbobitumen. Journal of Wuhan University of Science and Technology, 2009, 32(3): 293–295 (Natural Science Edition)
[5]
Efimova O S, Khokhlova G P, Patrakov Y F. Thermal conversion of coal-tar pitch in the presence of silicon compounds. Solid Fuel Chemistry, 2010, 44(1): 5–11
CrossRef Google scholar
[6]
Czosnek C, Ratuszek W, Janik J F, Olejniczak Z. XRD and 29Si MAS NMR spectroscopic studies of carbon materials obtained from pyrolyses of a coal tar pitch modified with various silicon-bearing additives. Fuel Processing Technology, 2002, 79(3): 199–206
CrossRef Google scholar
[7]
Bhatia G, Aggarwal R K, Chari S S, Jain G C. Rheological characteristics of coal tar and petroleum pitches with and without additives. Carbon, 1977, 15(4): 219–223
CrossRef Google scholar
[8]
Wang Y, He Z, Zhan L, Liu X. Coal tar pitch based carbon foam for thermal insulating material. Materials Letters, 2016, 169: 95–98
CrossRef Google scholar
[9]
Tan Y Q, Guo M, Cao L P, Zhang L. Performance Optimization of Composite Modified Asphalt Sealant based on Rheological Behavior. Construction & Building Materials, 2013, 47: 799–805
CrossRef Google scholar
[10]
Guo M, Motamed A, Tan Y Q, Bhasin A. Investigating the Interaction between Asphalt Binder and Fresh and Simulated RAP Aggregate. Materials & Design, 2016, 105: 25–33
CrossRef Google scholar
[11]
Tan Y Q, Guo M. Using Surface Free Energy Method to Study the Cohesion and Adhesion of Asphalt Mastic. Construction & Building Materials, 2013, 47: 254–260
CrossRef Google scholar
[12]
Tan Y Q, Guo M. Study on the Phase Behavior of Asphalt Mastic. Construction & Building Materials, 2013, 47: 311–317
CrossRef Google scholar
[13]
Lin Q, Li J, Yang Y, Xie Z. Thermal behavior of coal-tar pitch modified with BMI resin. Journal of Analytical and Applied Pyrolysis, 2010, 87(1): 29–33
CrossRef Google scholar
[14]
Schneider K, Roller M, Kalberlah F, Schuhmacher-wolz U. Cancer risk assessment for oral exposure to PAH mixtures. Journal of Applied Toxicology, 2002, 22(1): 73–83
CrossRef Google scholar
[15]
Hou Y, Wang L, Yue P, Pauli T, Sun W. Modeling Mode I Cracking Failure in Asphalt Binder by Using Nonconserved Phase-Field Model. Journal of Materials in Civil Engineering, 2014, 26(4): 684–691
CrossRef Google scholar
[16]
Hou Y, Yue P, Wang L, Sun W. Fracture Failure in Crack interaction of Asphalt Binder by Using a Phase Field Approach. Materials and Structures, 2015a, 48(9): 2997–3008
CrossRef Google scholar
[17]
Hou Y, Wang L, Pauli T, Sun W. Investigation of the Asphalt Self-healing Mechanism Using a Phase-Field Model. Journal of Materials in Civil Engineering, 2015, 27(3): 04014118
CrossRef Google scholar
[18]
Hou Y, Sun F, Sun W, Guo M, Xing C, Wu J. Quasi-brittle Fracture Modeling of Pre-Flawed Bitumen Using a Diffuse Interface Model. Advances in Materials Science and Engineering. 2016a, (6): 1–7
CrossRef Google scholar
[19]
Hou Y, Sun W, Das P, Song X, Wang L, Ge Z, Huang Y. Coupled Navier-Stokes Phase-Field Model to Evaluate the Microscopic Phase Separation in Asphalt Binder under Thermal Loading. Journal of Materials in Civil Engineering, 2016b, 28(10): 04016100
CrossRef Google scholar
[20]
Hou Y, Wang L, Wang D, Liu P, Guo M, Yu J. Characterization of Bitumen Micro-mechanical Behaviors Using AFM, Phase Dynamics Theory and MD simulation. Materials, 2017, 10(2): 208.

ACKNOWLEDGEMENTS

The research performed in this paper is supported by the National Natural Science Foundation of China (No.41372320), and Fundamental Research Funds for the Central Universities (06500036).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1021 KB)

Accesses

Citations

Detail

Sections
Recommended

/