Modeling of shear walls using finite shear connector elements based on continuum plasticity

Ulf Arne GIRHAMMAR , Per Johan GUSTAFSSON , Bo KÄLLSNER

Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 143 -157.

PDF (922KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 143 -157. DOI: 10.1007/s11709-016-0377-3
REVIEW
REVIEW

Modeling of shear walls using finite shear connector elements based on continuum plasticity

Author information +
History +
PDF (922KB)

Abstract

Light-frame timber buildings are often stabilized against lateral loads by using diaphragm action of roofs, floors and walls. The mechanical behavior of the sheathing-to-framing joints has a significant impact on the structural performance of shear walls. Most sheathing-to-framing joints show nonlinear load-displacement characteristics with plastic behavior. This paper is focused on the finite element modeling of shear walls. The purpose is to present a new shear connector element based on the theory of continuum plasticity. The incremental load-displacement relationship is derived based on the elastic-plastic stiffness tensor including the elastic stiffness tensor, the plastic modulus, a function representing the yield criterion and a hardening rule, and function representing the plastic potential. The plastic properties are determined from experimental results obtained from testing actual connections. Load-displacement curves for shear walls are calculated using the shear connector model and they are compared with experimental and other computational results. Also, the ultimate horizontal load-carrying capacity is compared to results obtained by an analytical plastic design method. Good agreements are found.

Keywords

shear walls / wall diaphragms / finite element modelling / plastic shear connector / analytical modelling / experimental comparison

Cite this article

Download citation ▾
Ulf Arne GIRHAMMAR, Per Johan GUSTAFSSON, Bo KÄLLSNER. Modeling of shear walls using finite shear connector elements based on continuum plasticity. Front. Struct. Civ. Eng., 2017, 11(2): 143-157 DOI:10.1007/s11709-016-0377-3

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Background

In many European countries the fire regulations have been changed from prescriptive to functionally based ones. The result of this change is that timber can be used as structural material also for buildings more than two stories high. The increased height of the buildings means that the horizontal stability of the buildings becomes an important issue to be solved.

The traditional way of designing timber frame buildings in the Nordic countries is to regard the building as composed of 2-dimensional structural elements fastened to each other. The shear design of the walls against wind loads is normally carried out using analytical linear elastic methods where each wall is assumed to be fully anchored against vertical uplift. The consequence of this design is often the need to use big tie-downs resulting in complicated and expensive detailing.

To find more economic solutions, more advanced design methods should be applied, e.g., analytical plastic methods and finite element methods that include nonlinear and plastic types of characteristics of, especially, the sheathing-to-framing joints, which are decisive for the shear wall behavior. Since the analytical elastic methods are only capable of analyzing shear walls that are fully anchored (i.e., the leading stud needs to be anchored to the substrate using some kind of hold-downs), it is essential to develop and use methods that are capable of analyzing shear walls that are only partially anchored, which often is the case in practice.

Analytical plastic design methods have been developed by Källsner and Girhammar (see e.g., [-]) that are capable of analyzing both fully and partially anchored sheathed shear walls subjected to arbitrarily distributed vertical point loads. The models are based on the assumption of plastic load-slip relations for the sheathing-to-framing joints. The fasteners can either be modeled as discretely located or uniformly distributed. Due to the “extra” fastener in the corners, the discrete modeling of the fasteners will give higher capacity than that of uniform or smeared modeling. These plastic analysis methods have several advantages and enable more efficient material usage and increased productivity. They are thus capable of taking into account the real tying down conditions for shear walls in practical structures and make it possible to avoid expensive and complicated anchoring to the foundation. In addition, the 3-dimensional behavior of buildings can be utilized through connecting the shear walls to the transverse walls and reduce or eliminate the need for separate hold down devices. With the plastic method it is possible to combine different types of anchoring, e.g., hold-downs and transverse walls, and take the remaining uplifting force through the sheathing-to-framing joints. The method also makes it possible to include the load-bearing capacity of wall segments including openings. The plastic analytical models are general in nature and can thus be used in design of shear walls with different sheet materials, sheathing-to-framing joints, geometric layout, anchoring conditions and load configurations. For further details, see Section 5.3.

Geometry and loading conditions

Structural behavior

Effect of anchorage

Effect of mechanical joints

Short review of analysis methods for shear walls

Analytical elastic methods

Analytical plastic methods

Finite element methods

Earlier developments

Modeling of sheathing-to-framing joints by spring elements

New finite shear connector element based on continuum plasticity

null

Modeling of shear walls with plastic shear connector elements

Material properties and shear wall geometry

Relationships for sheathing-to-framing joints

Relationships for stud-to-rail joints

FE model

Computational results – simulations and comparisons

Shear connector model

The differences between theoretical results and experimental ones have earlier been discussed by Vessby et al. []. First, all values are as they should on the conservative side. There are some reasons for the discrepancy. One is that the fastener is modeled as smeared shear layer and not as a discrete point. The “extra” discrete fastener in the corners will render a shear capacity that, for an ordinary shear wall segment, is about 4%–8% higher than the corresponding uniformly distributed shear flow in the smeared shear connector element (compare also the differences between the curves in Fig. 9, where the single spring model of Vessby et al. [] uses discretely located fasteners). The other reason is likely associated with the differences in the manufacturing of the sheathing-to-framing joints. During the manufacturing of the test specimens for single joints, only the hardboard was predrilled. During the manufacturing of the walls, the hardboard was placed on the timber frame when the predrilling took place, resulting in that both the hardboard and the timber members were predrilled. To study this effect some additional sheathing-to-framing joint tests were carried out using predrilled and non-predrilled timber members. A preliminary evaluation indicates that the moisture content has a significant influence on the capacity. For example, for a moisture content of 10%, the test results indicate that predrilling of the timber members may increase the capacity of the joints by up to about 20%. For high moisture contents, the corresponding increase in capacity is only a few per cent.

Single spring model

Analytical plastic method

Conclusions

References

[1]

Källsner BGirhammar U A. Plastic models for analysis of fully anchored light-frame timber shear walls. Engineering Structures200931(9): 2171–2181

[2]

Källsner BGirhammar U A. Plastic design of partially anchored wood-framed wall diaphragms with and without openings. In:Proceedings CIB-W18 Meeting. Karlsruhe, Germany, 2005

[3]

Källsner BGirhammar U A. Horizontal stabilising of light frame timber structures – Plastic design of wood-framed shear walls. SP Technical Research Institute of Sweden, SP Report 2008: 47, Stockholm, Sweden, 2009 (in Swedish)

[4]

Girhammar U AKällsner B. Horizontal stabilisation of sheathed timber frame structures using plastic design methods – Introducing a handbook. Part 1: Design principles for horizontal stabilisation. Procedia Engineering2016161: 618–627

[5]

Girhammar U AKällsner B. Horizontal stabilisation of sheathed timber frame structures using plastic design methods – Introducing a handbook. Part 2: Design of joints and anchoring devices. Procedia Engineering2016161: 628–635

[6]

Källsner BGirhammar U A. Horizontal stabilisation of sheathed timber frame structures using plastic design methods – Introducing a handbook. Part 3: Basics of the plastic design method. Procedia Engineering2016161: 634–644

[7]

Källsner BGirhammar U A. Horizontal stabilisation of sheathed timber frame structures using plastic design methods – Introducing a handbook. Part 4: Design in ultimate limit state. Procedia Engineering2016161: 645–654

[8]

Fosci R O. Analysis of wood diaphragms and trusses – Part I: Diaphragms. Canadian Journal of Civil Engineering19774(3): 345–352

[9]

Dolan J DFoschi R O. Structural analysis model for static loads on timber shear walls. Journal of Structural Engineering1991117(3): 851–861

[10]

Judd J PFonseca S.Analytical model for sheathing-to-framing connections in wood shear walls and diaphragms. Journal of Structural Engineering2005131(2): 345–352

[11]

Vessby JKällsner BOlsson AGirhammar U A. Evaluation of softening behaviour of timber light-frame walls subjected to in-plane forces using simple FE models. Engineering Structures201481: 464–479

[12]

Filiatrault A. Static and dynamic analysis of timber shear walls. Canadian Journal of Civil Engineering199017(4): 643–651

[13]

Källsner BGirhammar U A. Analysis of fully anchored light-frame timber shear walls – elastic model. Materials and Structures200942(3): 301–320

[14]

Vessby JOlsson AKällsner BGirhammar U A. Modelling aspects on wooden shear walls with mechanically fastened sheathing. In: Shear walls for multi-storey timber buildings by Johan Vessby, Licentiate Thesis, Report No. 44, School of Technology and Design, Växjö University, Sweden2008

[15]

Källsner BGirhammar U AVessby J. Evaluation of two analytical plastic design models for light-frame shear walls. 12th World Conference on Timber Engineering, Auckland, New Zealand, July 16–19, 2012

[16]

Girhammar U AGustafsson P JKällsner B. Finite element modelling of shear walls using connector shear elements based on continuum plasticity. In: Proceedings of the Tenth International Conference on Computational Structures Technology. Topping B H V, eds. Stirlingshire, Scotland: Civil-Comp Press, 2010

[17]

Neal B G. Plastic Methods of Structural Analysis. 2nd ed. London: Chapman & Hall and Science Paperbacks1965

[18]

Fosci R O. Modelling the hysteretic response of mechanical connections for wood structures. In: Proceedings of World Conference on Timber Engineering. Whistler Resort, British Columbia, Canada, July 31–August 3, 2000

[19]

Ottosen N SRistinmaa M. The Mechanics of Constitutive Modeling. Elsevier2005

[20]

Girhammar U ABovim N IKällsner B. Characteristics of sheathing-to-timber joints in wood shear walls. Proceedings 8th World Conference on Timber Engineering, Lahti, Finland, June, 14–17, 2004

[21]

Collins MKasal BPaevere PFoliente G C. Three-dimensional model of light frame wood buildings – I: Model description. Journal of Structural Engineering2005131(4): 676–683

[22]

Girhammar U A,Palm S.Tests on stud-to-rail joints in wood-framed shear walls. Umeå University, Faculty of Science and Technology, Department of TFE – Building Engineering, Report 2002:3, Umeå Sweden2002 (in Swedish)

[23]

Austrell P EDahlblom OLindemann JOlsson AOlsson K GPetersson HRistinmaa MSandberg GWernberg P A. CALFEM – A Finite Element Toolbox, Version 3.4. KFS in Lund AB, Sweden2004

[24]

Girhammar U AEltoft JPalm S. Tests of Wood-Framed Shear Walls at Partial Anchorage With and Without Openings. Umeå University, Faculty of Science and Technology, Department of TFE – Building Engineering, Report 2003:1, Umeå Sweden2003

[25]

Girhammar U AKällsner B. Tests on Partially Anchored Wood-Framed Shear Walls. 8th World Conference on Timber Engineering, Lahti, Finland2004

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (922KB)

2783

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/