Linear and nonlinear elastic analysis of closely spaced strip foundations using Pasternak model

Priyanka GHOSH , S. RAJESH , J. SAI CHAND

Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 228 -243.

PDF (815KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 228 -243. DOI: 10.1007/s11709-016-0370-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Linear and nonlinear elastic analysis of closely spaced strip foundations using Pasternak model

Author information +
History +
PDF (815KB)

Abstract

In this study, an attempt is made to determine the interaction effect of two closely spaced strip footings using Pasternak model. The study considers small strain problem and has been performed using linear as well as nonlinear elastic analysis to determine the interaction effect of two nearby strip footings. The hyperbolic stress-strain relationship has been considered for the nonlinear elastic analysis. The linear elastic analysis has been carried out by deriving the equations for the interference effect of the footings in the framework of Pasternak model equation; whereas, the nonlinear elastic analysis has been performed using the finite difference method to solve the second order nonlinear differential equation evolved from Pasternak model with proper boundary conditions. Results obtained from the linear and the nonlinear elastic analysis are presented in terms of non-dimensional interaction factors by varying different parameters like width of the foundation, load on the foundation and the depth of the rigid base. Results are suitably compared with the existing values in the literature.

Keywords

bearing capacity / linear and non-linear elasticity / foundation / interaction effect / numerical modeling / Pasternak model

Cite this article

Download citation ▾
Priyanka GHOSH, S. RAJESH, J. SAI CHAND. Linear and nonlinear elastic analysis of closely spaced strip foundations using Pasternak model. Front. Struct. Civ. Eng., 2017, 11(2): 228-243 DOI:10.1007/s11709-016-0370-x

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

The classical theories of shallow foundations which are widely used in practice, are valid as long as footings are isolated and there exists no other neighboring footing in the close proximity. In many situations for instance, scarcity of land, restrictions in property lines, architecture of the buildings or to accommodate structural requirements and with increased infrastructural development in the recent past and limited availability of space, buildings are constructed very close to each other. Therefore quite often, designed foundations or the group of foundations are placed in close proximity of each other. In such situations, the stress or failure zone of individual footings may interfere with those of the neighboring footings. Such interference of footings affects the characteristic behavior (bearing capacity, settlement, failure mechanism, etc.) of the individual footings occurring in a group. Stuart [] was the first to investigate the interference effect on the ultimate bearing capacity of two closely spaced rigid strip footings resting on the surface of cohesionless soil medium using limit equilibrium method. West and Stuart [] conducted experiments in the laboratory and analyzed the problem using method of stress characteristics and concluded that the interference affects significantly the ultimate bearing capacity of the interacting footings revealing the necessity of studies on the interference phenomenon on the characteristic behavior of footings. After hibernation of a long period, in the recent past a number of theoretical works are reported on the subject using method of stress characteristics [,], analytical approach [], probabilistic approach [], upper bound limit analysis [], lower bound limit analysis [], finite difference method [,], finite element method [,]. Besides these theoretical analysis mentioned above, a number of experimental studies on the interacting footings have been performed by various researchers to investigate the load-deformation response of two footings resting on cohesionless soil medium [].

The review exhibits that except the analysis of Nainegali et al. [], no significant work has yet been conducted on asymmetric footings. However, very often situations may arise near a property line where two strip footings of different size are subjected to unequal loading. Even if the footings are identical in shape and size, the loading may be asymmetric. Thus, a need is felt to study the interference of such footings and symmetric cases are then the sub-sets of the general problem. In this analysis, an effort is made to explore the interference effect of two closely spaced horizontal strip footings resting on dry homogenous soil deposit. The analysis is performed using Pasternak soil model, which considers a shear beam below the loaded area to take care of the continuity of the settlement distribution below the footing. Though a number of numerical techniques [] available in the literature to address similar class of problem, Pasternak soil model is chosen in this study for its easy understanding and robust implementation capability. The soil is assumed to obey both linear and nonlinear elasticity. The settlement response of an isolated footing subjected to a uniformly distributed load is obtained from the settlement response of an isolated footing subjected to line load. The interference effect of two closely spaced footings is obtained using the principle of superposition. The interaction factors (xL and xR) for the interacting footings with respect to the settlement at different clear spacing, S are reported here, where xL and xR are defined later.

Definition of problem

Mathematical formulation

Linear elastic analysis

Isolated strip footing

Interaction of two closely spaced strip footings

Nonlinear elastic analysis

Isolated strip footing

Interaction of two closely spaced strip footings

Material property estimation

Results and discussion

Linear elastic analysis

Nonlinear elastic analysis

The nonlinear elastic analysis of the interference effect of the closely spaced footings is carried out based on the parameters mentioned in Table 1. The magnitude of initial tangent modulus (Ei), Poisson’s ratio (µ) and the corresponding angle of internal friction (f) is considered as 30 MPa, 0.3 and 35° as proposed by Das [] for medium dense sand. The unit weight of the medium dense sand is considered as 20 kN/m3. As mentioned earlier, the additional parameter required in the nonlinear elastic analysis is the ultimate bearing capacity of the foundation, qu (Eq. (13)). The ultimate bearing capacity of single isolated surface strip footing resting on sand can be determined using Terzaghis’s classical equation, whereas the ultimate bearing capacity of the interacting foundations is different from that of an isolated foundation for the obvious reason. The magnitude of the ultimate bearing capacity of symmetric (a = 1.0) interacting foundations, qucan be determined using the efficiency factor as proposed by Kumar and Ghosh [] at different spacing between the foundations. In Eq. (14), it is assumed that the magnitude of the ultimate bearing capacity of the symmetric interacting foundations is same as that of the asymmetric interacting foundations under similar condition, which does not cause any serious lapse as the asymmetric interacting foundations usually exhibit higher ultimate bearing capacity than that of the symmetric interacting foundations. Therefore, for the sake of simplicity, the ultimate bearing capacity of the asymmetric foundations (a = 2.0) at different spacing is assumed to be the same as that of the symmetric (a = 1.0) interacting foundations at the corresponding spacing.

Comparison

Conclusions

References

[1]

Stuart J G. Interference between foundations with special reference to surface footings in sand. Geotechnique196212(1): 15–22

[2]

West J MStuart J G. Oblique loading resulting from interference between surface footings on sand. In: Proceedings of the 6th International Conference on Soil Mechanics. Montreal, 19652: 214–217

[3]

Graham JRaymond G PSuppiah A. Bearing capacity of three closely-spaced footings on sand. Geotechnique198434(2): 173–181

[4]

Kumar JGhosh P. Ultimate bearing capacity of two interfering rough strip footings. International Journal of Geomechanics20077(1): 53–62

[5]

Kumar ASaran S. Closely spaced footings on geogrid-reinforced sand. Journal of Geotechnical and Geoenvironmental Engineering2003129(7): 660–664

[6]

Griffiths D VFenton G AManoharan N. Undrained bearing capacity of two-strip footings on spatially random soil. International Journal of Geomechanics20066(6): 421–427

[7]

Kumar JGhosh P. Upper bound limit analysis for finding interference effect of two nearby strip footings on sand. Geotechnical and Geological Engineering200725(5): 499–507

[8]

Kumar JKouzer K M. Bearing capacity of two interfering footings. International Journal for Numerical and Analytical Methods in Geomechanics200832(3): 251–264

[9]

Kouzer K MKumar J. Ultimate bearing capacity of a footing considering the interference of an existing footing on sand. Geotechnical and Geological Engineering201028(4): 457–470

[10]

Kumar JBhattacharya P. Bearing capacity of two interfering strip footings from lower bound finite elements limit analysis. International Journal for Numerical and Analytical Methods in Geomechanics201337(5): 441–452

[11]

Mabrouki ABenmeddour DFrank RMellas M. Numerical study of the bearing capacity for two interfering strip footings on sands. Computers and Geotechnics201037(4): 431–439

[12]

Ghosh PSharma A. Interference effect of two nearby strip footings on layered soil: theory of elasticity approach. Acta Geotechnica20105(3): 189–198

[13]

Lee JEun JPrezzi MSalgado R. Strain influence diagrams for settlement estimation of both isolated and multiple footings in sand. Journal of Geotechnical and Geoenvironmental Engineering2008134(4): 417–427

[14]

Nainegali L SBasudhar P KGhosh P. Interference of two asymmetric closely spaced strip footings resting on nonhomogeneous and linearly elastic soil bed. International Journal of Geomechanics201313(6): 840–851

[15]

Saran SAgarwal V C. Interference of surface footings in sand. Indian Geotechnical Journal19744(2): 129–139

[16]

Deshmukh A M. Interaction of different types of footings on sand. Indian Geotechnical Journal19799: 193–204

[17]

Das B MLarbi-Cherif S. Bearing capacity of two closely spaced shallow foundations on sand. Soil and Foundation198323(1): 1–7

[18]

Das B MPuri V KNeo B K. Interference effects between two surface footings on layered soil. Transportation Research Record 1406, Transportation Research Board, Washington, DC1993, 34–40

[19]

Kumar JBhoi M K. Interference of two closely spaced strip footings on sand using model tests. Journal of Geotechnical and Geoenvironmental Engineering2009135(4): 595–604

[20]

Ghosh PKumar S R. Interference effect of two nearby strip surface footings on cohesionless layered soil. International Journal of Geotechnical Engineering20115(1): 87–94

[21]

Srinivasan VGhosh P. Experimental investigation on interaction problem of two nearby circular footings on layered cohesionless soil. Geomechanics and Geoengineering20138(2): 97–106

[22]

Rabczuk TBelytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering2007196(29–30): 2777–2799

[23]

Rabczuk TZi GBordas SNguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering2010199(37–40): 2437–2455

[24]

Areias PRabczuk TDias-da-Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics2013110: 113–137

[25]

Nguyen-Xuan HLiu G RBordas SNatarajan SRabczuk T. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Computer Methods in Applied Mechanics and Engineering2013253: 252–273

[26]

Amiri FAnitescu CArroyo MBordas S P ARabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics201453(1): 45–57

[27]

Areias PRabczuk TCamanho P P. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics201472: 50–63

[28]

Nguyen-Xuan HLiu G R. An edge-based finite element method (ES-FEM) with adaptive scaled-bubble functions for plane strain limit analysis. Computer Methods in Applied Mechanics and Engineering2015285: 877–905

[29]

Nguyen-Xuan HRabczuk T. Adaptive selective ES-FEM limit analysis of cracked plane-strain structures. Frontiers in Civil Engineering20159(4): 478–490

[30]

Nguyen-Xuan HWu C TLiu G R. An adaptive selective ES-FEM for plastic collapse analysis. European Journal of Mechanics. A, Solids201658: 278–290

[31]

Pasternak P L. On a new method of analysis of an elastic foundation by means of two foundation constants. Gosudarstvennoe Izdatelstro Liberaturi po Stroitelstvui Arkhitekture, Moscow1954

[32]

Vlazov V ZLeontiev U N. Beams, plates and shells on elastic foundations. Israel Program for Scientific Translations, Jerusalem1966

[33]

Konder R LZelasko J S. Void ratio effects on the hyperbolic stress strain response of a sand. Canadian Geotechnical Journal19632(1): 40–52

[34]

Timoshenko S PGoodier J N. Theory of elasticity. 3rd ed. New York: McGraw-Hill, 1970

[35]

Selvadurai A P S. Elastic Analysis of Soil Foundation Interaction. Elsevier Scientific Publishing Company, The Netherlands1979

[36]

Das B M. Principles of Geotechnical Engineering. 5th ed. Thomson Brooks/Cole, India2007

[37]

Nainegali L S. Finite element analysis of two symmetric and asymmetric interfering footings resting on linearly and non-linearly elastic foundation beds. Dissertation for the Doctoral Degree, IIT Kanpur2014

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (815KB)

2791

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/