Linear and nonlinear elastic analysis of closely spaced strip foundations using Pasternak model

Priyanka GHOSH, S. RAJESH, J. SAI CHAND

PDF(816 KB)
PDF(816 KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 228-243. DOI: 10.1007/s11709-016-0370-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Linear and nonlinear elastic analysis of closely spaced strip foundations using Pasternak model

Author information +
History +

Abstract

In this study, an attempt is made to determine the interaction effect of two closely spaced strip footings using Pasternak model. The study considers small strain problem and has been performed using linear as well as nonlinear elastic analysis to determine the interaction effect of two nearby strip footings. The hyperbolic stress-strain relationship has been considered for the nonlinear elastic analysis. The linear elastic analysis has been carried out by deriving the equations for the interference effect of the footings in the framework of Pasternak model equation; whereas, the nonlinear elastic analysis has been performed using the finite difference method to solve the second order nonlinear differential equation evolved from Pasternak model with proper boundary conditions. Results obtained from the linear and the nonlinear elastic analysis are presented in terms of non-dimensional interaction factors by varying different parameters like width of the foundation, load on the foundation and the depth of the rigid base. Results are suitably compared with the existing values in the literature.

Keywords

bearing capacity / linear and non-linear elasticity / foundation / interaction effect / numerical modeling / Pasternak model

Cite this article

Download citation ▾
Priyanka GHOSH, S. RAJESH, J. SAI CHAND. Linear and nonlinear elastic analysis of closely spaced strip foundations using Pasternak model. Front. Struct. Civ. Eng., 2017, 11(2): 228‒243 https://doi.org/10.1007/s11709-016-0370-x

References

[1]
Stuart J G. Interference between foundations with special reference to surface footings in sand. Geotechnique, 1962, 12(1): 15–22
[2]
West J M, Stuart J G. Oblique loading resulting from interference between surface footings on sand. In: Proceedings of the 6th International Conference on Soil Mechanics. Montreal, 1965, 2: 214–217
[3]
Graham J, Raymond G P, Suppiah A. Bearing capacity of three closely-spaced footings on sand. Geotechnique, 1984, 34(2): 173–181
[4]
Kumar J, Ghosh P. Ultimate bearing capacity of two interfering rough strip footings. International Journal of Geomechanics, 2007, 7(1): 53–62
[5]
Kumar A, Saran S. Closely spaced footings on geogrid-reinforced sand. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(7): 660–664
[6]
Griffiths D V, Fenton G A, Manoharan N. Undrained bearing capacity of two-strip footings on spatially random soil. International Journal of Geomechanics, 2006, 6(6): 421–427
[7]
Kumar J, Ghosh P. Upper bound limit analysis for finding interference effect of two nearby strip footings on sand. Geotechnical and Geological Engineering, 2007, 25(5): 499–507
[8]
Kumar J, Kouzer K M. Bearing capacity of two interfering footings. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(3): 251–264
[9]
Kouzer K M, Kumar J. Ultimate bearing capacity of a footing considering the interference of an existing footing on sand. Geotechnical and Geological Engineering, 2010, 28(4): 457–470
[10]
Kumar J, Bhattacharya P. Bearing capacity of two interfering strip footings from lower bound finite elements limit analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(5): 441–452
[11]
Mabrouki A, Benmeddour D, Frank R, Mellas M. Numerical study of the bearing capacity for two interfering strip footings on sands. Computers and Geotechnics, 2010, 37(4): 431–439
[12]
Ghosh P, Sharma A. Interference effect of two nearby strip footings on layered soil: theory of elasticity approach. Acta Geotechnica, 2010, 5(3): 189–198
[13]
Lee J, Eun J, Prezzi M, Salgado R. Strain influence diagrams for settlement estimation of both isolated and multiple footings in sand. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(4): 417–427
[14]
Nainegali L S, Basudhar P K, Ghosh P. Interference of two asymmetric closely spaced strip footings resting on nonhomogeneous and linearly elastic soil bed. International Journal of Geomechanics, 2013, 13(6): 840–851
[15]
Saran S, Agarwal V C. Interference of surface footings in sand. Indian Geotechnical Journal, 1974, 4(2): 129–139
[16]
Deshmukh A M. Interaction of different types of footings on sand. Indian Geotechnical Journal, 1979, 9: 193–204
[17]
Das B M, Larbi-Cherif S. Bearing capacity of two closely spaced shallow foundations on sand. Soil and Foundation, 1983, 23(1): 1–7
[18]
Das B M, Puri V K, Neo B K. Interference effects between two surface footings on layered soil. Transportation Research Record 1406, Transportation Research Board, Washington, DC, 1993, 34–40
[19]
Kumar J, Bhoi M K. Interference of two closely spaced strip footings on sand using model tests. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(4): 595–604
[20]
Ghosh P, Kumar S R. Interference effect of two nearby strip surface footings on cohesionless layered soil. International Journal of Geotechnical Engineering, 2011, 5(1): 87–94
[21]
Srinivasan V, Ghosh P. Experimental investigation on interaction problem of two nearby circular footings on layered cohesionless soil. Geomechanics and Geoengineering, 2013, 8(2): 97–106
[22]
Rabczuk T, Belytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799
[23]
Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455
[24]
Areias P, Rabczuk T, Dias-da-Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137
[25]
Nguyen-Xuan H, Liu G R, Bordas S, Natarajan S, Rabczuk T. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 252–273
[26]
Amiri F, Anitescu C, Arroyo M, Bordas S P A, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57
[27]
Areias P, Rabczuk T, Camanho P P. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63
[28]
Nguyen-Xuan H, Liu G R. An edge-based finite element method (ES-FEM) with adaptive scaled-bubble functions for plane strain limit analysis. Computer Methods in Applied Mechanics and Engineering, 2015, 285: 877–905
[29]
Nguyen-Xuan H, Rabczuk T. Adaptive selective ES-FEM limit analysis of cracked plane-strain structures. Frontiers in Civil Engineering, 2015, 9(4): 478–490
[30]
Nguyen-Xuan H, Wu C T, Liu G R. An adaptive selective ES-FEM for plastic collapse analysis. European Journal of Mechanics. A, Solids, 2016, 58: 278–290
[31]
Pasternak P L. On a new method of analysis of an elastic foundation by means of two foundation constants. Gosudarstvennoe Izdatelstro Liberaturi po Stroitelstvui Arkhitekture, Moscow, 1954
[32]
Vlazov V Z, Leontiev U N. Beams, plates and shells on elastic foundations. Israel Program for Scientific Translations, Jerusalem, 1966
[33]
Konder R L, Zelasko J S. Void ratio effects on the hyperbolic stress strain response of a sand. Canadian Geotechnical Journal, 1963, 2(1): 40–52
[34]
Timoshenko S P, Goodier J N. Theory of elasticity. 3rd ed. New York: McGraw-Hill, 1970
[35]
Selvadurai A P S. Elastic Analysis of Soil Foundation Interaction. Elsevier Scientific Publishing Company, The Netherlands, 1979
[36]
Das B M. Principles of Geotechnical Engineering. 5th ed. Thomson Brooks/Cole, India, 2007
[37]
Nainegali L S. Finite element analysis of two symmetric and asymmetric interfering footings resting on linearly and non-linearly elastic foundation beds. Dissertation for the Doctoral Degree, IIT Kanpur, 2014

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(816 KB)

Accesses

Citations

Detail

Sections
Recommended

/