Control efficiency optimization and Sobol’s sensitivity indices of MTMDs design parameters for buffeting and flutter vibrations in a cable stayed bridge

Nazim Abdul NARIMAN

PDF(2457 KB)
PDF(2457 KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (1) : 66-89. DOI: 10.1007/s11709-016-0356-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Control efficiency optimization and Sobol’s sensitivity indices of MTMDs design parameters for buffeting and flutter vibrations in a cable stayed bridge

Author information +
History +

Abstract

This paper studies optimization of three design parameters (mass ratio, frequency ratio and damping ratio) of multiple tuned mass dampers MTMDs that are applied in a cable stayed bridge excited by a strong wind using minimax optimization technique. ABAQUS finite element program is utilized to run numerical simulations with the support of MATLAB codes and Fast Fourier Transform FFT technique. The optimum values of these three parameters are validated with two benchmarks from the literature, first with Wang and coauthors and then with Lin and coauthors. The validation procedure detected a good agreement between the results. Box-Behnken experimental method is dedicated to formulate the surrogate models to represent the control efficiency of the vertical and torsional vibrations. Sobol’s sensitivity indices are calculated for the design parameters in addition to their interaction orders. The optimization results revealed better performance of the MTMDs in controlling the vertical and the torsional vibrations for higher mode shapes. Furthermore, the calculated rational effects of each design parameter facilitate to increase the control efficiency of the MTMDs in conjunction with the support of the surrogate models.

Keywords

MTMDs / power spectral density / fast Fourier transform / minimax optimization technique / Sobol’s sensitivity indices / Box-Behnken method

Cite this article

Download citation ▾
Nazim Abdul NARIMAN. Control efficiency optimization and Sobol’s sensitivity indices of MTMDs design parameters for buffeting and flutter vibrations in a cable stayed bridge. Front. Struct. Civ. Eng., 2017, 11(1): 66‒89 https://doi.org/10.1007/s11709-016-0356-8

References

[1]
Zi G, Rabczuk T, Wall W A. Extended meshfree methods without branch enrichment for cohesive cracks. Computational Mechanics, 2007, 40(2): 367–382
[2]
Rabczuk T, Belytschko T. Application of particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1–4): 19–49
[3]
Rabczuk T, Bordas S, Zi G. A three-dimensional meshfree method for continuous multiplecrack initiation, nucleation and propagation in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495
[4]
Bordas S, Rabczuk T, Zi G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by extrinsic discontinuous enrichment of meshfree methods without asymptotic enrichment. Engineering Fracture Mechanics, 2008, 75(5): 943–960
[5]
Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A geometrically non-linear three dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758
[6]
Rabczuk T, Bordas S, Zi G. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23–24): 1391–1411
[7]
Rabczuk T, Zi G. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760
[8]
Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455
[9]
Rabczuk T, Areias P M A, Belytschko T. A meshfree thin shell method for nonlinear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548
[10]
Nguyen-Thanh N, Valizadeh N, Nguyen M N, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T. An extended isogeometric thin shell analysis based on Kirchhoff-Love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291
[11]
Amiri F, Milan D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109
[12]
Areias P, Rabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotation. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122
[13]
Chau-Dinh T, Zi G, Lee P S, Song J H, Rabczuk T. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92–93: 242–256
[14]
Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wuchner R, Bletzinger K U, Bazilevs Y, Rabczuk T.Rotation free isogeometric thin shell analysis using PHT-splines, Computer Methods in Applied Mechanics and Engineering 2011, 200(47- 48):3410–3424
[15]
Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas S. A smoothed finite element method for shell analysis. Computer Methods in Applied Mechanics and Engineering, 2008, 198(2): 165–177
[16]
Thai H C, Nguyen-Xuan H, Bordas S, Nguyen-Thanh N, Rabczuk T. Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory. Mechanics of Advanced Materials and Structures, 2015, 22(6): 451–469
[17]
Thai C H, Ferreira A J M, Bordas S, Rabczuk T, Nguyen-Xuan H. Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. European Journal of Mechanics. A, Solids, 2014, 43: 89–108
[18]
Phan-Dao H, Nguyen-Xuan H, Thai-Hoang C, Nguyen-Thoi T, Rabczuk T. An edge-based smoothed finite element method for analysis of laminated composite plates. International Journal of Computational Methods, 2013, 10(1): 1340005
[19]
Thai C H, Nguyen-Xuan H, Nguyen-Thanh N, Le T H, Nguyen-Thoi T, Rabczuk T. Static, free vibration and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach. International Journal for Numerical Methods in Engineering, 2012, 91(6): 571–603
[20]
Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie J F. A smoothed finite element method for plate analysis. Computer Methods in Applied Mechanics and Engineering, 2008, 197(13–16): 1184–1203
[21]
Budarapu P R, Javvaji B, Sutrakar V K, Mahapatra D R, Zi G, Rabczuk T. Crack propagation in Graphene. Journal of Applied Physics, 2015, 118: 064307
[22]
Yang S W, Budarapu P R, Mahapatra D R, Bordas S, Zi G, Rabczuk T. A meshless adaptive multiscale method for fracture. Computational Materials Science, 2015, 96B: 382–395
[23]
Budarapu P R, Sudhir Sastry Y B, Javvaji B, Mahapatra D R. Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Frontiers of Structural and Civil Engineering, 2014, 8(2): 151–159
[24]
Budarapu P R, Narayana T S S, Rammohan B, Rabczuk T. Directionality of sound radiation from rectangular panels. Applied Acoustics, 2015, 89: 128–140
[25]
Budarapu P R, Gracie R, Yang S W, Zhaung X, Rabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143
[26]
Budarapu P R, Gracie R, Bordas S, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148
[27]
Zhuang X, Augarde C, Mathisen K. Fracture modelling using meshless methods and level sets in 3D: framework and modelling. International Journal for Numerical Methods in Engineering, 2012, 92: 969–998
[28]
Cai Y, Zhu H, Zhuang X. A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modelling. Frontiers of Structural & Civil Engineering, 2014, 7: 369–378
[29]
Rabczuk T, Gracie R, Jeong-Hoon S, Belytschko T. Immersed particle method for fluid–structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81: 48–71
[30]
Rabczuk T, Belytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799
[31]
Rabczuk T, Eibl J, Stempniewski L. Simulation of high velocity concrete fragmentation using SPH/MLSPH. International Journal for Numerical Methods in Engineering, 2003, 56(10): 1421–1444
[32]
Rabczuk T, Eibl J, Stempniewski L. Numerical analysis of high speed concrete fragmentation using a meshfree Lagrangian method. Engineering Fracture Mechanics, 2004, 71: 547–556
[33]
Rabczuk T, Eibl J. Modeling dynamic failure of concrete with meshfree particle methods. International Journal of Impact Engineering, 2006, 32(11): 1878–1897
[34]
Rabczuk T, Samaniego E, Belytschko T. Simplied model for predicting impulsive loads on submerged structures to account for fluid-structure interaction. International Journal of Impact Engineering, 2007, 34(2): 163–177
[35]
Rabczuk T, Areias P, Belytschko T. A simplied meshfree method for shear bands with cohesive surfaces. International Journal for Numerical Methods in Engineering, 2007, 69(5): 993–1021
[36]
Rabczuk T, Samaniego E. Discontinuous modelling of shear bands using adaptive meshfree methods. Computer Methods in Applied Mechanics and Engineering, 2008, 197(6–8): 641–658
[37]
Rabczuk T, Gracie R, Song J H, Belytschko T. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71
[38]
Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
[39]
Rabczuk T, Belytschko T, Xiao S P. Stable particle methods based on Lagrangian kernels. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12–14): 1035–1063
[40]
Rabczuk T, Akkermann J, Eibl J. A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5–6): 1327–1354
[41]
Rabczuk T, Eibl J.Numerical analysis of prestressed concrete beams using a coupled element free Galerkin/nite element method, International Journal of Solids and Structures, 2004, 41 (3-4): 1061–1080
[42]
Rabczuk T, Belytschko T. Adaptivity for structured meshfree particle methods in 2D and 3D. International Journal for Numerical Methods in Engineering, 2005, 63(11): 1559–1582
[43]
Talebi H, Silani M, Rabczuk T. Concurrent multiscale modelling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92
[44]
Talebi H, Silani M, Bordas S, Kerfriden P, Rabczuk T. A computational library for multiscale modelling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071
[45]
Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering, 2013, 11(6): 527–541
[46]
Ghorashi S, Valizadeh N, Mohammadi S, Rabczuk T. T-spline based XIGA for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146
[47]
Areias P, Msekh M A, Rabczuk T. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 116–143
[48]
Areias P, Rabczuk T, Camanho P P. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63
[49]
Areias P, Rabczuk T, Dias-da-Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137
[50]
Areias P, Rabczuk T, Camanho P P. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics, 2013, 52(4): 931–947
[51]
Amiri F, Anitescu C, Arroyo M, Bordas S, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57
[52]
Nguyen B H, Tran H D, Anitescu C, Zhuang X, Rabczuk T. An isogeometric symmetric galerkin boundary element method for elastostatic analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 252–275
[53]
Quoc T T, Rabczuk T, Meschke G, Bazilevs Y. A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 584–604
[54]
Chen L, Rabczuk T, Bordas S, Liu G R, Zeng K Y, Kerfriden P. Extended finite element method with edge-based strain smoothing (Esm-XFEM) for linear elastic crack growth. Computer Methods in Applied Mechanics and Engineering, 2012, 209–212(4): 250–265
[55]
Zhao X, Gouder K, Limebeer D J N, Graham J M R. Experimental flutter and buffet suppression of a sectional suspended-bridge. 53rd IEEE Conference on Decision and Control, Los Angeles, California, USA, <Date>15–17 December</Date> 2014
[56]
Starossek U, Aslan H. Passive Control of Bridge Deck Flutter Using Tuned Mass Dampers and Control Surfaces. 7th European Conference on Structural Dynamics (EURODYN 2008), Southampton, UK, <Date>7–9 July</Date>, 2008
[57]
Valdebenito G E, Aparicio A C. Seismic Behaviour of Cable Stayed Bridges: A State of The Art Review. 4th International Conference on Earthquake Engineering, Taipei, Taiwan, China, <Date>12–13 October</Date>, 2006
[58]
Flamand O, De Oliveira F, Stathopoulos-Vlamis A, Papanikolas P, Panagis A. Using non continuous records from full scale monitoring system for fatigue assessment. 7th European Workshop on Structural Health Monitoring, La Cité, Nantes, France, <Date>8–11 July</Date>, 2014
[59]
Yuh-Yi L, Chii-Ming C, Sun D. Wind-induced vibration control of long-span bridges by multiple tuned mass dampers. Tamkang Journal of Science and Engineering, 2000, 3(1): 1–13
[60]
Chen S R, Cai C S. Control of Wind-Induced Coupled Vibration of Long-span Bridges with Tuned Mass Dampers. 11th International Wind Engineering Conferences, Lubbock, Texas, US, June, 2003, 853–860
[61]
Qin H, Liao H, Lin M, Sun Y. Vortex-Induced Vibration of continuous Beam Bridge and Its Mitigation. The Eighth Asia-Pacific Conference on Wind Engineering, Chennai, India, <Date>10–14 December</Date>, 2013
[62]
Ubertini F, Comanducci G, Laflamme S. A parametric study on reliability based tuned mass damper design against bridge flutter. Journal of Vibration and Control, 2015, 1–22
[63]
Kam-Hang T. Tuned Mass Dampers for Flutter and Buffeting Control of Long-Span Suspension Bridges. Master Thesis, Hong Kong: Department of Mechanical Engineering. Hong Kong University of Science and Technology, 1997
[64]
Starossek U, Aslan H. A Novel Aero-Elastic Damper for Long-Span Bridges. 12th International Conference on Wind Engineering, Cairns, Australia, <Date>1–6 July</Date>, 2007
[65]
Lin Y Y, Cheng C M, Lee C H. Multiple tuned mass dampers for controlling coupled buffeting and flutter of long span bridges. Wind and Structures, 1999, 2(4): 267–284
[66]
Ding Q, Lee P K K. Computer simulation of buffeting actions of suspension bridges under turbulent wind. Computers & Structures, 2000, 76: 787–797
[67]
Patil A S. Mitigation of Vortex Induced Response in Long Span Bridges. Master Thesis, Florida: Department of Civil and Environmental Engineering. The Florida State University, 2010
[68]
Budarapu P R, Sudhir Sastry Y B, Natarajan R. Design concepts of an aircraft wing: composite and morphing airfoil with auxetic structures. Frontiers of Structural and Civil Engineering, 2016 (in Press)
[69]
Sudhir Sastry Y B, Budarapu P R, Madhavi N, Krishna Y. Buckling analysis of thin wall stiffened composite panels. Computational Materials Science, 2015, 96B: 459–471
[70]
Sudhir Sastry Y B, Budarapu P R, Krishna Y, Devaraj S. Studies on ballistic impact of the composite panels. Theoretical and Applied Fracture Mechanics, 2014, 72: 2–12
[71]
Chen X. Optimization and Estimation Routine for Tuned Mass Damper. Master Thesis, Karlskrona, Sweden: Department of Mechanical Engineering. Blekinge Institute of Technology, 2010
[72]
Pourzeynali S, Esteki S. Optimization of the TMD Parameters to Suppress the Vertical Vibrations of Suspension Bridges Subjected to Earthquake Excitations. IJE Transactions B: Applications, 2009, 22(1): 23–34
[73]
Kubo Y. Prospects for the Suppression of Aeroedynamic Vibrations of a Long-Span Bridge Using Boundary-Layer Control. Journal of Vibration and Control, 2004, 10: 1359–1373
[74]
Karoumi R. Modeling of Cable-stayed Bridges for Analysis of Traffic Induced Vibrations. 18th International Modal Analysis Conference (IMAC XVIII), 2000, 842–848
[75]
Yang F. Optimal Vibration Suppression of Beam-Type Structures using Passive and Semi-Active Tuned Mass Dampers. Dissertation for the Doctoral Degree, Montreal: Department of Mechanical and Industrial Engineering, Concordia University, 2008
[76]
Gua M, Chen S R, Chang C C. Control of wind-induced vibrations of long-span bridges by semi-active lever-type TMD. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90: 111–126
[77]
Chen S R, Cai C S. Coupled vibration control with tuned mass damper for long-span bridges. Journal of Sound and Vibration, 2004, 278: 449–459
[78]
Feldmann M, Heinemeyer C.Human induced vibration of steel structures, Design of Footbridges. HIVOSS, RFS2-CT-00033, 2007
[79]
Chen S. Dynamic Performance of Bridges and Vehicles under Strong Wind. Dissertation for the Doctoral Degree, Louisiana, USA: Department of Civil and Environmental Engineering, Louisiana State University, 2004
[80]
Chen X, Kareem A. Efficiency of tuned mass dampers for bridge flutter control. Journal of Structural Engineering, 2003, 129(10): 1291–1300
[81]
Andersson A, OConnor A, Karoumi R. External damping of stay cables using adaptive and semi-active vibration control. 8th International Cable Supported Bridge Operators Conference, Edinburgh, UK, <Date>3–5 June</Date>, 2013
[82]
Zivanovic S, Pavic A, Reynolds P.Vibration serviceability of footbridges under human-induced excitation: a literature review. Journal of Sound and Vibration 2005, 279(1–2): 1–74
[83]
Xing C, Wang H, Li A, Xu Y. Study on wind induced vibration control of a long span cable stayed bridge using TMD type counterweight. Journal of Bridge Engineering, 2014, 19(1): 141–148
[84]
Lin Y Y, Cheng C M, Lee C H. A tuned mass damper for suppressing the coupled flexural and torsional buffeting response of long-span bridges. Engineering Structures, 2000, 22: 1195–1204
[85]
Hsiang-Chuan T, Guan-Cheng L. Optimum tuned mass damper for minimizing steady state response of support-excited and damped system. Journal of Earthquake Engineering and Structural Dynamics, 1993, 22: 957–973
[86]
Ghasemi H, Brighenti R, Zhuang X, Muthu J, Rabczuk T. Optimum fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach. Structural and Multidisciplinary Optimization, 2015, 51(1): 99–112
[87]
Ghasemi H, Rafiee R, Zhuang X, Muthu J, Rabczuk T. Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling. Computational Materials Science, 2014, 85: 295–305
[88]
Ghasemi H, Brighenti R, Zhuang X, Muthu J, Rabczuk T. Optimization of fiber distribution in fiber reinforced composite by using NURBS functions. Computational Materials Science, 2014, 83(15): 463–473
[89]
Hamdia K, Msekh M A, Silani M, Vu-Bac N, Zhuang X, Nguyen-Thoi T, Rabczuk T. Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Composite Structures, 2015, 133: 1177–1190
[90]
Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535
[91]
Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2014, 68: 446–464
[92]
Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of carbon nanotube polyethylene composites. Composites. Part B, Engineering, 2014, 59: 80–95
[93]
Vu-Bac N, Lahmer T, Keitel H, Zhao J, Zhuang X, Rabczuk T. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68: 70–84
[94]
Nanthakumar S, Lahmer T, Zhuang X, Zi G, Rabczuk T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 24(1): 153–176
[95]
Nanthakumar S, Valizadeh N, Park H, Rabczuk T. Surface effects on shape and topology optimization of nanostructures. Computational Mechanics, 2015, 56(1): 97–112
[96]
Hamdia K, Zhuang X, He P, Rabczuk T. Fracture toughness of polymeric particle nanocomposites: Evaluation of Models performance using Bayesian method. Composites Science and Technology, 2016, 126: 122–129
[97]
Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A softwarefram ework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
[98]
Zhang R. Seismic Isolation and Supplemental Energy Dissipation. Bridge Engineering Handbook, Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000
[99]
Fujino Y, Siringoringo D M, Nagayama T, Su D. Control, simulation and monitoring of bridge vibration – Japan’s recent development and practice. IABSE-JSCE Joint Conference on Advances in Bridge Engineering-II, Dhaka, Bangladesh, <Date>8–10 August</Date>, 2010
[100]
Guo P. Damping System Designs using Nonlinear Frequency Analysis Approach. Dissertation for the Doctoral Degree, Sheffield, UK: Department of Automatic Control and Systems Engineering, University of Sheffield, 2012
[101]
Huang L. Experimental Study on Bridge Stay Cable Vibration Mitigation Using External Viscous Damper. Master Thesis, Windsor, Canada: Department of Civil and Environmental Engineering. University of Windsor, 2011
[102]
Casalotti A, Arena A, Lacarbonara W. Flutter Suppression in Long-Span Suspension Bridges by Arrays of Hysteretic Tuned Mass Dampers. XXI AIMETA Congress of Theoretical and Applied Mechanics, Torino, Italy, <Date>17–20 September</Date>, 2013
[103]
Abdel Raheem Sh E, Hayashikawa T. Vibration and damping characteristics of cable-stayed bridges tower control. International Association for Bridge and Structural Engineering, 2008, 8: 30–37
[104]
Huang M H. Dynamic Characteristics of Slender Suspension Footbridges. Dissertation for the Doctoral Degree, Brisbane, Australia: Faculty of Built Environmental and Engineering, Queensland University of Technology, 2006
[105]
Caruso G, Mekki O B, Bourquin F. Modeling and experimental validation of a new electromechanical damping device. Journal of Vibroengineering, 2009, 11(4): 1–9
[106]
Bernd-Arno B, Krimm R, Hasselbusch T. Tuned Mass Damper with Piezoelectrically Tunable Damping. 20th International Congress on Sound and Vibration (ICSV20), Bangkok, Thailand, <Date>7–11 July</Date>, 2013
[107]
Samani F Sh. Vibration Reduction on Beams Subjected to Traveling Loads Using Linear and Nonlinear Dynamic Absorbers. PhD [dissertation]. Kerman, Iran: Department of Mechanical Engineering. Shahid Bahonar University of Kerman; 2010.
[108]
Webster A C, Vaicaitis R.Application of Tuned Mass Dampers to Control Vibrations of Composite Floor Systems. Engineering Journal/American Institute of Steel Construction 2003, 116–124
[109]
Mishra R. Application of Tuned Mass Damper for Vibration Control of Frame Structures Under Seismic Excitations. Dissertation for the Doctoral Degree, Rourkela, India: Department of Civil Engineering. National Institute of Technology; 2011.
[110]
Wang H, Tao T, Cheng H, He X. Simulation study on train-induced vibration control of a long-span steel truss girder bridge by tuned mass dampers. Hindawi Publishing Corporation. Mathematical Problems in Engineering, 2014, 1–12
[111]
Shetty R S, Prashanth M H, Channappa T M, Ravikumar C M. Vibration suppression of steel truss railway bridge using tuned mass dampers. International Journal of Civil and Structural Engineering, 2013, 4(1): 63–71
[112]
Thamasungkeeti W. Suppression of Aerodynamic Responses of IRR Cable-Stayed Bridge by Tuned Mass Dampers and Aerodynamic Appendages. Master Thesis, Bangkok, Thailand: Department of Civil Engineering. Thammasat University, 2009
[113]
Miyata T. Historical view of long-span bridge aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91: 1393–1410
[114]
Kumar A. Investigation of the Dynamic Performance of a Cable stayed Footbridge. Dissertation for the Doctoral Degree, Trento, Italy: School of Civil Engineering and Mechanical Structural Systems, University of Trento, 2011
[115]
Tran D A. Numerical Investigation into the Suppression Mechanism of Vortex-Induced Vibration for Box Girder in the Presence of Flap. Dissertation for the Doctoral Degree, Kanagawa, Japan: Urban Innovation Faculty, Yokohama National University, 2014
[116]
Wen Q, Xu-gang H, Zheng-qing C. Field validation on vibration control of a cable-stayed footbridge with tuned mass dampers. 11th International Workshop on Advanced Smart Materials and Smart Structures Technology, University of Illinois, Urbana-Champaign, USA, <Date>1–2 August</Date>, 2015
[117]
Valizadeh N, Natarajan S, Gonzalez-Estrada O A, Rabczuk T, Tinh Q B, Bordas S. NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Composite Structures, 2013, 99: 309–326
[118]
Wang H, Tao T Y, Cheng H Y,Li A Q. A simulation study on the optimal control of buffeting displacement for the Sutong Bridge with multiple tuned mass dampers. Journal of Zhejiang Univ-Sci A (Appl Phys & Eng), 2014, 15(10): 798–812
[119]
Bandivadekar T P, Jangid R S. Mass distribution of multiple tuned mass dampers for vibration control of structures. International Journal of Civil and Structural Engineering, 2012, 3(1): 70–84
[120]
Chunxiang L, Li Q S. Evaluation of the lever-type multiple tuned mass dampers for mitigating harmonically forced vibration. International Journal of Structural Stability and Dynamics, 2005, 5(4): 641–664
[121]
Chen Q, Xiang H. The vibration suppressing performance of the multiple tuned mass damper (MTMD) and its control over the buffeting of bridges. Journal of Tongji University Natural Science, 1998, 28(2): 125–133
[122]
Gua M, Chen S R, Chang C C. Parametric study on multiple tuned mass dampers for buffeting control of Yangpu Bridge. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89: 987–1000
[123]
Lin Y Y, Cheng C M. Performance of multiple tuned mass dampers for suppressing buffeting response and increasing flutter speed of long span bridges. Journal of Chinese Institute of Engineers, 2001, 24(3): 273–288
[124]
Estrada A P, Hong H P. Sensitivity analysis of the effectiveness of tuned mass dampers to reduce the wind-induced torsional responses. Latin American Journal of Solids and Structures, 2015, 12: 2520–2538
[125]
Karmakara D, Ray-Chaudhuri S, Shinozuka M. Conditional simulation of non-Gaussian wind velocity profiles: Application to buffeting response of Vincent Thomas suspension bridge. Probabilistic Engineering Mechanics, 2012, 29: 167–175
[126]
Glen G, Isaacs K. Estimating Sobol sensitivity indices using correlations. Journal of Environmental Modelling and Software, 2012, 37: 157–166
[127]
Nossent J, Elsen P, Bauwens W. Sobol sensitivity analysis of a complex environmental model. Journal of Environmental Modelling and Software, 2011, 26: 1515–1525
[128]
Zhang X Y, Trame M N, Lesko L J, Schmidt S. Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models. CPT: Pharmacometrics & Systems Pharmacology, 2015, 4: 69–79
[129]
Saltelli A. Global sensitivity analysis: An introduction. European Commission, Joint Research Centre of Ispra, Italy, 2004
[130]
Wainwright H M, Finsterle S, Jung Y, Zhou Q, Birkholzer J T. Making sense of global sensitivity analyses. Computers & Geosciences, 2014, 65: 84–94
[131]
Pasma S A, Daik R, Maskat M Y, Hassan O. Application of Box-Behnken design in optimization of glucose production from oil palm empty fruit bunch cellulose. International Journal of Polymer Science, 2013, 104502: 1–8
[132]
Qiu P, Cui M, Kang K, Park B, Son Y, Khim E, Jang M, Khim J. Application of Box–Behnken design with response surface methodology for modeling and optimizing ultrasonic oxidation of arsenite with H2O2. Central European Journal of Chemistry, 2014, 12(2): 164–172
[133]
Ferreira S L C, Bruns R E, da Silva E G P, dos Santos W N L, Quintella C M, David J M, de Andrade J B, Breitkreitz M C, Jardim I C S F, Neto B B. Statistical designs and response surface techniques for the optimization of chromatographic systems. Journal of Chromatography A, 2007, 1158: 2–14
[134]
Tekindal M A, Bayrak H, Ozkaya B, Genc Y. Box-Behnken experimental design in factorial experiments: The importance of bread for nutrition and health. Turkish Journal of Field Crops, 2012, 17(2): 115–123
[135]
Amenaghawon N A, Nwaru K I, Aisien F A, Ogbeide S E, Okieimen C O. Application of Box-Behnken design for the optimization of citric acid production from corn starch using Aspergillus niger. British Biotechnology Journal, 2013, 3(3): 236–245
[136]
Ferreira S L C, Santos W N L, Quintella C M, Neto B B, Boque-Sendra J M. Doehlert Matrix: a chemometric toll for analytical chemistry review. Talanta, 2004, 63(4): 1061–1067
[137]
Souza A S, dos Santos W N L, Ferreira Sergio L C. Application of Box–Behnken design in the optimization of an on-line pre-concentration system using knotted reactor for cadmium determination by flame atomic absorption spectrometry. Spectrochimica Acta. Part B, Atomic Spectroscopy, 2005, 609: 737–742
[138]
Massart D L, Vandeginste B G M, Buydens L M C, Jong S D, Lewi P J, Smeyers J V. Handbook of chemometrics and qualimetrics Part A. Amsterdam: Elsevier; 2003.
[139]
Kannan N, Rajakumar A, Rengasamy G. Optimization of process parameters for adsorption of metal ions on straw carbon by using response surface methodology. Environmental Technology, 2004, 25: 513–522
[140]
Rana P, Mohan N, Rajagopal C. Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes. Water Research, 2004, 38(28): 11–20
[141]
Kincl M, Turk S, Vrecer F. Application of experimental design methodology in development and optimization of drug release method. International Journal of Pharmaceutics, 2005, 291: 39–49
[142]
Zhao J, Tiede C. Using a variance-based sensitivity analysis for analyzing the relation between measurements and unknown parameters of a physical model. Nonlinear Processes in Geophysics, 2011, 18: 269–276
[143]
Khuri A I, Mukhopadhyay S. Response surface methodology. WIREs Comp Stat, 2010, 2, DOI: 10.1002/wics.73
[144]
Aslan N, Cebeci Y. Application of Box-Behnken design and response surface methodology for modeling of some Turkish coals. Fuel, 2007, 86: 90–97
[145]
Kwak J S. Application of Taguchi and response surface methodologies for geometric error in surface grinding process. International Journal of Machine Tools & Manufacture, 2005, 45: 327–334
[146]
Annadurai G, Sung S S, Lee D L. Optimisation of floc characteristics for treatment of highly turbid water. Separation Science and Technology, 2004, 39: 19–42
[147]
Gunaraj V, Murugan N. Application of response surface methodologies for predicting weld base quality in submerged arc welding of pipes. Journal of Materials Processing Technology, 1999, 88(1–3): 266–275
[148]
Ren H, Zhuang X, Cai Y, Rabczuk T. Dual-Horizon Peridynamics. International Journal for Numerical Methods in Engineering, 2016, 453–474
[149]
Nguyen V P, Anitescu C, Bordas S, Rabczuk T.Isogeometric analysis: An overview and computer implementation aspects, Mathematics and Computers in Simulations, 2015, 117(4190): 89–116
[150]
Valizadeh N, Bazilevs Y, Chen J S, Rabczuk T. A coupled IGA-meshfree discretization of arbitrary order of accuracy and without global geometry parameterization. Computer Methods in Applied Mechanics and Engineering, 2015, 293: 20–37

Acknowledgements

The author would like to thank Prof. Dr. Guido Morgenthal and Prof. Dr. Tom Lahmer, for their continuous support in providing guidance and consultancy relating to this research study at the faculty of civil engineering at Bauhaus Universitat Weimar, Germany.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2457 KB)

Accesses

Citations

Detail

Sections
Recommended

/