Modern developments related to nanotechnology and nanoengineering of concrete
Konstantin SOBOLEV
Modern developments related to nanotechnology and nanoengineering of concrete
This paper reports on modern developments related to nanotechnology of cement and concrete. Recent advances in instrumentation and design of advanced nano-composite materials is discussed. New technological directions and historical milestones in nanoengineering and nanomodification of cement-based materials are presented. It is concluded that there is a strong potential of nanotechnology to improve the performance of cement-based materials.
nanotechnology / cement / concrete / nanoparticle / nano-composite / nanomodification / carbon nanotubes / C-S-H gel / photocatalyst
[1] |
Bhushan B, ed. Handbook of Nanotechnology. Berlin: Springer, 2004
|
[2] |
Poole C P, Owens F J. Introduction to Nanotechnology. New York:John Wiley&Sons, 2003
|
[3] |
Gann D. A Review of Nanotechnology and its Potential Applications for Construction. Sussex SPRU,, 2002.
|
[4] |
Klabunde K J, ed. Nanoscale Materials in Chemistry. New York:Wiley, 2004, 304
|
[5] |
Sobolev K, Sanchez F, Raki L, Betts J, Kovler K, Sonebi M, Ferrara L, McDonald D B, Taylor P C, Livingston R A, Shah S P, Basheer M P A, Kurtis K E, Wang K. Bibliography on Application of Nanotechnology and Nanomaterials in Concrete. Skokie: Portland Cement Association, 2008
|
[6] |
Calderón-Moreno J M, Schehl M, Popa M. Superplastic behavior of zirconia-reinforced alumina nanocomposites from powder alcoxide mixtures. Acta Materialia, 2002, 50(16): 3973–3983
CrossRef
Google scholar
|
[7] |
Sobolev K, Ferrada-Gutiérrez M. How Nanotechnology Can Change the Concrete World: Part 1. American Ceramic Society Bulletin, 2005, 10: 14–17
|
[8] |
Dalton A B, Collins S, Muñoz E, Razal J M, Ebron V H, Ferraris J P, Coleman J N, Kim B G, Baughman R H. Super-tough carbon-nanotube fibres. Nature, 2003, 423(6941): 703
CrossRef
Google scholar
|
[9] |
Nanotechnology of Concrete: Recent Developments and Future Perspectives. Sobolev K, Shah S P, eds. Michigan: American Concrete Institute, 2008
|
[10] |
Sanchez F, Sobolev K. Nanotechnology in concrete—A review. Construction & Building Materials, 2010, 24(11): 2060–2071
CrossRef
Google scholar
|
[11] |
Sobolev K, Sanchez F. Nanoengineered Concrete. In: Encyclopedia of Nanotechnology. Bhushan B. ed. Berlin: Springer, 2015
|
[12] |
Plassard C, Lesniewska E, Pochard I, Nonat A A. Investigation of the surface structure and elastic properties of calcium silicate hydrates at the nanoscaled. Ultramicroscopy, 2004, 100(3-4): 331–338
CrossRef
Google scholar
|
[13] |
WatanabeT, KojimaE.US Patent, 6 294 247, 2001
|
[14] |
Hosseini T, Flores-Vivian I, Sobolev K, Kouklin N. Concrete embedded dye-synthesized photovoltaic solar cell. Nature Scientific Reports, 2013, 3: 2727
|
[15] |
Sobolev K, Flores I, Hermosillo R, Torres-Martínez L M. Application of nanomaterials in high-performance cement composites. In: The Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives. Sobolev K, Shah S P, eds. Michigan: American Concrete Institute, 2008, 93–120
|
[16] |
Flores-Vivian I, Pradoto R G K, Moini M, Kozhukhova M, Potapov V, Sobolev K. The Effect of SiO2 Nanoparticles Derived from Hydrothermal Solutions on the Performance of Portland Cement Based Materials. Materials & Design, 2016
|
[17] |
Thomas J J, Jennings H M, Chen J J. Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. Journal of Physical Chemistry C, 2009, 113(11): 4327–4334
CrossRef
Google scholar
|
[18] |
Collepardi M, Ogoumah-Olagot J J, Skarp U, Troli R. Influence of Amorphous Colloidal Silica on the Properties of Self-Compacting Concretes Proceedings of the International Conference. In: Proceedings of the International Conference in Concrete Constructions.Dundee: University of Dundee, 2002, 473–483
|
[19] |
Green B H. Development of a High-Density Cementitious Rock-Matching Grout Using Nano-Particles. In: Sobolev K, Shah S P, eds. The Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives. Denver: American Concrete institute, 2008, 121–131
|
[20] |
Björnström J, Martinelli A, Matic A, Borjesson L, Panas I. Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement. Chemical Physics Letters, 2004, 392(1-3): 242–248
CrossRef
Google scholar
|
[21] |
Li G. Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement and Concrete Research, 2004, 34(6): 1043–1049
CrossRef
Google scholar
|
[22] |
Qing Y, Zenan Z, Deyu K, Rongshen C. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction & Building Materials, 2007, 21(3): 539–545
CrossRef
Google scholar
|
[23] |
Porro A, Dolado J S, Campillo I, Erkizia E, de Miguel Y, Sáez de Ibarra Y, Ayuela A. Effects of nanosilica additions on cement pastes. In: Applications of nanotechnology in concrete design; London: Thomas Telford, 2005
|
[24] |
Flores I, Sobolev K, Torres L M, Valdez P L, Zarazua E, Cuellar E L. Performance of Cement Systems with Nano-SiO2 Particles Produced Using Sol-gel Method. In: Proceedings of the TRB 1st International Conference on Nanotechnology in Cement and Concrete , Irvine, California, USA, May5–7, 2010
|
[25] |
Sobolev K. High performance cement: A solution for next millennium. Materials Technology, 1999, 14(4): 191–193
|
[26] |
Sanchez F, Zhang L, Ince C. Multi-scale performance and durability of carbon nanofiber/cement composites. In:Bittnar Z, Bartos PJM,Nemecek J,Smilauer V,Zeman J, eds. Nanotechnology in Construction: Proceedings of the NICOM-3, Prague, Czech Republic, 2009, 345–350
|
[27] |
Shah S P, Konsta-Gdoutos M S, Metaxa Z S, Mondal P. Nanoscale modification of cementitious materials. In:Bittnar Z, Bartos PJM,Nemecek J,Smilauer V,Zeman J, eds. Nanotechnology in Construction: Proceedings of the NICOM-3, Prague, Czech Republic, 2009, 125–130
|
[28] |
Makar J M, Margeson J, Luh J. Carbon nanotube/cement composites—early results and potential applications. In: Proceedings of 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications. Vancouver, August 22‒24, 2005; 1–10.
|
[29] |
Sbia L A, Peyvandi A, Soroushian P, Balachandra A M, Sobolev K. Evaluation of modified-graphite nanomaterials in concrete nanocomposite based on packing density principles. Construction & Building Materials, 2015, 76: 413–422
CrossRef
Google scholar
|
[30] |
Petrunin S, Vaganov V, Sobolev K. Cement Composites Reinforced with Functionalized Carbon Nanotubes. In: Proceedings of XXII International Materials Research Congress. Materials Research Society: Cancun, 2013, vol. 1611
|
[31] |
Peyvandi A, Sbia L A, Soroushian P, Sobolev K. Effect of the cementitious paste density on the performance efficiency of carbon nanofiber in concrete nanocomposite. Construction & Building Materials, 2013, 48: 265–269
CrossRef
Google scholar
|
[32] |
Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Multi-scale mechanical and fracturecharacteristics and early-age strain capacity of high performance carbonnanotube/cement nanocomposites. Cement and Concrete Composites, 2010, 32(2): 110–115
CrossRef
Google scholar
|
[33] |
Metaxa Z S, Konsta-Gdoutos M S, Shah S P. Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency. Cement and Concrete Composites, 2013, 36: 25–32
CrossRef
Google scholar
|
[34] |
Sanchez F, Ince C. Microstructure and macroscopic properties of hybridcarbon nanofiber/silica fume cement composites. Composites Science and Technology, 2009, 69(7-8): 1310–1318
CrossRef
Google scholar
|
[35] |
Hoheneder J, Flores-Vivian I, Lin Z, Zilberman P, Sobolev K. The performance of stress-sensing smart fiber reinforced composites in moist and sodium chloride environments. Composites. Part B, Engineering, 2015, 73: 89–95
CrossRef
Google scholar
|
[36] |
Konsta-Gdoutos M S, Aza C A. Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cement and Concrete Composites, 2014, 53: 162–169
CrossRef
Google scholar
|
[37] |
Han B, Yu X, Kwon E. A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology, 2009, 20(44): 445501
CrossRef
Google scholar
|
[38] |
Cassar L, Pepe C, Tognon G, Guerrini G L, Amadelli R. White Cement For Architectural Concrete Possessing Photocatalytic Properties. In: Proceedings of the 11th International Congress on the Chemistry of Cement (ICCC), Durban, South Africa,2003
|
[39] |
Chen J, Poon C. Photocatalytic construction and building materials: fromfundamentals to applications. Building and Environment, 2009, 44(9): 1899–1906
CrossRef
Google scholar
|
[40] |
Faraldos M, Kropp R, Anderson M A, Sobolev K. Photocatalytic hydrophobic concrete coatings to combat air pollution. Catalysis Today, 2016, 259: 228–236
CrossRef
Google scholar
|
[41] |
Kamaruddin S, Stephan D. Quartz–titania composites for the photocatalytical modification of construction materials. Cement and Concrete Composites, 2013, 36: 109–115
CrossRef
Google scholar
|
/
〈 | 〉 |