Modern developments related to nanotechnology and nanoengineering of concrete

Konstantin SOBOLEV

PDF(1778 KB)
PDF(1778 KB)
Front. Struct. Civ. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 131-141. DOI: 10.1007/s11709-016-0343-0
Review Article
Review Article

Modern developments related to nanotechnology and nanoengineering of concrete

Author information +
History +

Abstract

This paper reports on modern developments related to nanotechnology of cement and concrete. Recent advances in instrumentation and design of advanced nano-composite materials is discussed. New technological directions and historical milestones in nanoengineering and nanomodification of cement-based materials are presented. It is concluded that there is a strong potential of nanotechnology to improve the performance of cement-based materials.

Keywords

nanotechnology / cement / concrete / nanoparticle / nano-composite / nanomodification / carbon nanotubes / C-S-H gel / photocatalyst

Cite this article

Download citation ▾
Konstantin SOBOLEV. Modern developments related to nanotechnology and nanoengineering of concrete. Front. Struct. Civ. Eng., 2016, 10(2): 131‒141 https://doi.org/10.1007/s11709-016-0343-0

References

[1]
Bhushan B, ed. Handbook of Nanotechnology. Berlin: Springer, 2004
[2]
Poole C P, Owens F J. Introduction to Nanotechnology. New York:John Wiley&Sons, 2003
[3]
Gann D. A Review of Nanotechnology and its Potential Applications for Construction. Sussex SPRU,, 2002.
[4]
Klabunde K J, ed. Nanoscale Materials in Chemistry. New York:Wiley, 2004, 304
[5]
Sobolev K, Sanchez F, Raki L, Betts J, Kovler K, Sonebi M, Ferrara L, McDonald D B, Taylor P C, Livingston R A, Shah S P, Basheer M P A, Kurtis K E, Wang K. Bibliography on Application of Nanotechnology and Nanomaterials in Concrete. Skokie: Portland Cement Association, 2008
[6]
Calderón-Moreno J M, Schehl M, Popa M. Superplastic behavior of zirconia-reinforced alumina nanocomposites from powder alcoxide mixtures. Acta Materialia, 2002, 50(16): 3973–3983
CrossRef Google scholar
[7]
Sobolev K, Ferrada-Gutiérrez M. How Nanotechnology Can Change the Concrete World: Part 1. American Ceramic Society Bulletin, 2005, 10: 14–17
[8]
Dalton A B, Collins S, Muñoz E, Razal J M, Ebron V H, Ferraris J P, Coleman J N, Kim B G, Baughman R H. Super-tough carbon-nanotube fibres. Nature, 2003, 423(6941): 703
CrossRef Google scholar
[9]
Nanotechnology of Concrete: Recent Developments and Future Perspectives. Sobolev K, Shah S P, eds. Michigan: American Concrete Institute, 2008
[10]
Sanchez F, Sobolev K. Nanotechnology in concrete—A review. Construction & Building Materials, 2010, 24(11): 2060–2071
CrossRef Google scholar
[11]
Sobolev K, Sanchez F. Nanoengineered Concrete. In: Encyclopedia of Nanotechnology. Bhushan B. ed. Berlin: Springer, 2015
[12]
Plassard C, Lesniewska E, Pochard I, Nonat A A. Investigation of the surface structure and elastic properties of calcium silicate hydrates at the nanoscaled. Ultramicroscopy, 2004, 100(3-4): 331–338
CrossRef Google scholar
[13]
WatanabeT, KojimaE.US Patent, 6 294 247, 2001
[14]
Hosseini T, Flores-Vivian I, Sobolev K, Kouklin N. Concrete embedded dye-synthesized photovoltaic solar cell. Nature Scientific Reports, 2013, 3: 2727
[15]
Sobolev K, Flores I, Hermosillo R, Torres-Martínez L M. Application of nanomaterials in high-performance cement composites. In: The Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives. Sobolev K, Shah S P, eds. Michigan: American Concrete Institute, 2008, 93–120
[16]
Flores-Vivian I, Pradoto R G K, Moini M, Kozhukhova M, Potapov V, Sobolev K. The Effect of SiO2 Nanoparticles Derived from Hydrothermal Solutions on the Performance of Portland Cement Based Materials. Materials & Design, 2016
[17]
Thomas J J, Jennings H M, Chen J J. Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. Journal of Physical Chemistry C, 2009, 113(11): 4327–4334
CrossRef Google scholar
[18]
Collepardi M, Ogoumah-Olagot J J, Skarp U, Troli R. Influence of Amorphous Colloidal Silica on the Properties of Self-Compacting Concretes Proceedings of the International Conference. In: Proceedings of the International Conference in Concrete Constructions.Dundee: University of Dundee, 2002, 473–483
[19]
Green B H. Development of a High-Density Cementitious Rock-Matching Grout Using Nano-Particles. In: Sobolev K, Shah S P, eds. The Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives. Denver: American Concrete institute, 2008, 121–131
[20]
Björnström J, Martinelli A, Matic A, Borjesson L, Panas I. Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement. Chemical Physics Letters, 2004, 392(1-3): 242–248
CrossRef Google scholar
[21]
Li G. Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement and Concrete Research, 2004, 34(6): 1043–1049
CrossRef Google scholar
[22]
Qing Y, Zenan Z, Deyu K, Rongshen C. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction & Building Materials, 2007, 21(3): 539–545
CrossRef Google scholar
[23]
Porro A, Dolado J S, Campillo I, Erkizia E, de Miguel Y, Sáez de Ibarra Y, Ayuela A. Effects of nanosilica additions on cement pastes. In: Applications of nanotechnology in concrete design; London: Thomas Telford, 2005
[24]
Flores I, Sobolev K, Torres L M, Valdez P L, Zarazua E, Cuellar E L. Performance of Cement Systems with Nano-SiO2 Particles Produced Using Sol-gel Method. In: Proceedings of the TRB 1st International Conference on Nanotechnology in Cement and Concrete , Irvine, California, USA, May5–7, 2010
[25]
Sobolev K. High performance cement: A solution for next millennium. Materials Technology, 1999, 14(4): 191–193
[26]
Sanchez F, Zhang L, Ince C. Multi-scale performance and durability of carbon nanofiber/cement composites. In:Bittnar Z, Bartos PJM,Nemecek J,Smilauer V,Zeman J, eds. Nanotechnology in Construction: Proceedings of the NICOM-3, Prague, Czech Republic, 2009, 345–350
[27]
Shah S P, Konsta-Gdoutos M S, Metaxa Z S, Mondal P. Nanoscale modification of cementitious materials. In:Bittnar Z, Bartos PJM,Nemecek J,Smilauer V,Zeman J, eds. Nanotechnology in Construction: Proceedings of the NICOM-3, Prague, Czech Republic, 2009, 125–130
[28]
Makar J M, Margeson J, Luh J. Carbon nanotube/cement composites—early results and potential applications. In: Proceedings of 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications. Vancouver, August 22‒24, 2005; 1–10.
[29]
Sbia L A, Peyvandi A, Soroushian P, Balachandra A M, Sobolev K. Evaluation of modified-graphite nanomaterials in concrete nanocomposite based on packing density principles. Construction & Building Materials, 2015, 76: 413–422
CrossRef Google scholar
[30]
Petrunin S, Vaganov V, Sobolev K. Cement Composites Reinforced with Functionalized Carbon Nanotubes. In: Proceedings of XXII International Materials Research Congress. Materials Research Society: Cancun, 2013, vol. 1611
[31]
Peyvandi A, Sbia L A, Soroushian P, Sobolev K. Effect of the cementitious paste density on the performance efficiency of carbon nanofiber in concrete nanocomposite. Construction & Building Materials, 2013, 48: 265–269
CrossRef Google scholar
[32]
Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Multi-scale mechanical and fracturecharacteristics and early-age strain capacity of high performance carbonnanotube/cement nanocomposites. Cement and Concrete Composites, 2010, 32(2): 110–115
CrossRef Google scholar
[33]
Metaxa Z S, Konsta-Gdoutos M S, Shah S P. Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency. Cement and Concrete Composites, 2013, 36: 25–32
CrossRef Google scholar
[34]
Sanchez F, Ince C. Microstructure and macroscopic properties of hybridcarbon nanofiber/silica fume cement composites. Composites Science and Technology, 2009, 69(7-8): 1310–1318
CrossRef Google scholar
[35]
Hoheneder J, Flores-Vivian I, Lin Z, Zilberman P, Sobolev K. The performance of stress-sensing smart fiber reinforced composites in moist and sodium chloride environments. Composites. Part B, Engineering, 2015, 73: 89–95
CrossRef Google scholar
[36]
Konsta-Gdoutos M S, Aza C A. Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cement and Concrete Composites, 2014, 53: 162–169
CrossRef Google scholar
[37]
Han B, Yu X, Kwon E. A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology, 2009, 20(44): 445501
CrossRef Google scholar
[38]
Cassar L, Pepe C, Tognon G, Guerrini G L, Amadelli R. White Cement For Architectural Concrete Possessing Photocatalytic Properties. In: Proceedings of the 11th International Congress on the Chemistry of Cement (ICCC), Durban, South Africa,2003
[39]
Chen J, Poon C. Photocatalytic construction and building materials: fromfundamentals to applications. Building and Environment, 2009, 44(9): 1899–1906
CrossRef Google scholar
[40]
Faraldos M, Kropp R, Anderson M A, Sobolev K. Photocatalytic hydrophobic concrete coatings to combat air pollution. Catalysis Today, 2016, 259: 228–236
CrossRef Google scholar
[41]
Kamaruddin S, Stephan D. Quartz–titania composites for the photocatalytical modification of construction materials. Cement and Concrete Composites, 2013, 36: 109–115
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1778 KB)

Accesses

Citations

Detail

Sections
Recommended

/