New approach to determine the plastic viscosity of self-compacting concrete
M. BENAICHA, X. ROGUIEZ, O. JALBAUD, Y. BURTSCHELL, A. Hafidi ALAOUI
New approach to determine the plastic viscosity of self-compacting concrete
The rheology of concrete is best measured with the use of a rheometer. The slump flow test gives a good indication of the flowability of the mixture and is therefore still used extensively to judge the workability of SCC mixtures. However, this test presents some defects. The objective of this paper is to develop a new methodology for measuring the workability of a SCC. In this article, we have proposed a correlation between the plastic viscosity of concrete, the time and the characteristics of the flow final profile from the V-funnel coupled to a Plexiglas horizontal channel. The proposed approach, verified by experimental results, represents a simple, economical and usable tool on building site, and it allows to characterize rheologically the SCC from its flow. The comparison between our approach and the experimental values of the plastic viscosity shows that, in a laboratory or on site, instead of using a rheometer we can use our approach to characterize the rheological behavior of a SCC.
rheology / viscosity / V-funnel / flow profile / rheometer / behavior
[1] |
Okamura H, Outchi M. Applications of self-compacting concrete in Japan. In: Proceedings of the 3rd international RILEM symposium. Reykjavik, Iceland, <month>Aug</month>, 2003, 3
|
[2] |
Liu M. Self-compacting concrete with different levels of pulverized fuel ash. Construction & Building Materials, 2010, 24: 1245–1252
|
[3] |
Leemann A, Loser R, Münch B. Influence of cement type on ITZ porosity and chloride resistance of self-compacting concrete. Cement and Concrete Composites, 2010, 32: 116–120
|
[4] |
Kou S C, Poon C S. Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates. Cement and Concrete Composites, 2009, 31: 622–627
|
[5] |
Filho F M A, Barragán B E, Casas J R. ALHC El Debs. Hardened properties of self compacting concrete — a statistical approach. Construction & Building Materials, 2010, 24: 1608–1615
|
[6] |
Boukendakdji O, Kenai S, Kadri E H, Rouis F. Effect of slag on the rheology of fresh self-compacted concrete. Construction & Building Materials, 2009, 23: 2593–2598
|
[7] |
Craeye B, De Schutter G, Desmet B, Vantomme J, Heirman G, Vandewalle L, Cizer Ö, Aggoun S, Kadri E H. Effect of mineral filler type on autogenous shrinkage of self-compacting concrete. Cement and Concrete Research, 2010, 40: 908–913
|
[8] |
Billberg, P. Self-compacting concrete for civil engineering structures - The Swedish experience. CBI Report 2:99, Swedish Cement and Concrete Research Institute, SE-100 44 Stockholm
|
[9] |
Ye G, Liu X, De Schutter G, Poppe A M, Taerwe L. Influence of limestone powder used as filler in SCC on hydration and microstructure of cement pastes. Cement and Concrete Composites, 2007, 29(2): 94–102
|
[10] |
Poppe A M, Schutter G D. Cement hydration in the presence of high filler contents. Cement and Concrete Research, 2005, 35(12): 2290–2299
|
[11] |
Assie S, Escadeillas G, Waller V. Estimates of self-compacting concrete ‘potential’ durability. Construction & Building Materials, 2007, 21(10): 1909–1917
|
[12] |
Banfill P F G. The rheology of fresh mortar. Magazine of Concrete Research, 1991, 43(154): 13–21
|
[13] |
Chidiac S E, Maadani O, Razaqpur A G, Mailvaganam N P. Controlling the quality of fresh concrete — a new approach. Magazine of Concrete Research, 2000, 52(5): 353–363
|
[14] |
Chidiac S E, Maadani O, Razaqpur A G, Mailvaganam N P. Correlation of rheological properties to durability and strength of hardened concrete. Journal of Materials in Civil Engineering, 2003, 15(4): 391–399
|
[15] |
Chidiac S E, Mahmoodzadeh F. Plastic viscosity of fresh concrete — A critical review of predictions methods. Cement and Concrete Composites, 2009, 31: 535–544
|
[16] |
Bird R B, Dai G C, Yarusso B J. The rheology and flow of viscoplastic materials. Rev Chem Eng, 1983, 1: 1–70
|
[17] |
Bird R B, Stewart W E, Lightfoot E N. Transport Phenomena, New York: Wiley, 1960
|
[18] |
Bird R B, Hassager O, Armstrong R C. Dynamics of Polymeric Liquids. Vol. 1: Fluid mechanics. 2nd ed. New York: Wiley, 1987
|
[19] |
Mitsoulis E. Flows of Viscoplastic Materials: Models and Computations. Rheology Reviews, 2007, 135–178
|
[20] |
Tattersall G H. Workability and Quality Control of Concrete. London: E & FN SPON, 1991, 54–77
|
[21] |
Ferraris C F, Brower E B. Comparison of Concrete Rheometers: International Tests at LCPC (Nantes, France). NIST, 2000, 33–36
|
[22] |
FNARC. Specification and Guidelines for Self-compacting Concrete. Surrey, UK, <month>Feb.</month>2002, 7–9
|
[23] |
Petersson O, Gibbs J, Bartos P. Testing SCC: A European Project, Self-compacting concrete. In the 3rd international RILEM symposium. Reykjavik, Iceland, <month>Aug.</month>2003, 299–304
|
[24] |
Utsi E. Carlsward. Relation between workability and rheological parameters. In: Proceedings of the 3rd international RILEM conference on SCC. août, Reykjavik, Islande, 2003, 154–164
|
[25] |
Nielsson I, Wallevik O H. Rheological evaluation of some empirical test methods - preliminary results, self-compacting concrete. In: the 3rd international RILEM symposium. Reykjavik, Iceland, <month>Aug</month>, 2003, 59–68
|
[26] |
Roussel N, Coussot P. Ecoulements d’affaissement et d’étalement: modélisation, analyse et limites pratiques. Revue Européenne de Génie Civil, 2006, 10(1): 25–44
|
[27] |
Roussel N. The LCPC box: A cheap and simple technique for yield stress measurements of SCC. Materials and Structures, 2007, 889–896
|
[28] |
Benaicha M. Rheological and mechanical characterization of concrete: New approach. Livre, éditeur: LAP Lambert Academic Publishing, 2013, 68
|
[29] |
Benaicha M, Alaoui hafidi A, Burtschell Y. Formulation des différents bétons (BAP, BHP et BFUP) à haute teneur en additions minérales: Optimisation pour améliorer le coulage, la résistance au jeune âge et la durabilité des bétons. Thèse de doctorat, AMU, 2013
|
[30] |
Saak A W, Jennings H M, Shah S P. Characterization of the rheological properties of cement paste for use in self-compacting concrete. In: Proceedings of the 1st international RILEM symposium on “self-compacting concrete”. Stockholm, Sweden, 1999, 83–93
|
[31] |
Saak A W, Jennings H M, Shah S P. New methodology for designing self-compacting concrete. ACI Materials Journal, 2001, 98(6): 429–439
|
[32] |
Cyr M. Contribution à la caractérisation des fines minérales et à la compréhension de leur rôle joué dans le comportement rhéologique des matrices cimentaires. Thèse de doctorat en cotutelle, INSA de Toulouse et Université de Sherbrooke, 1999
|
/
〈 | 〉 |