Thermo-elastic extended meshfree method for fracture without crack tip enrichment

A. ASADPOUR

Front. Struct. Civ. Eng. ›› 2015, Vol. 9 ›› Issue (4) : 441 -447.

PDF (224KB)
Front. Struct. Civ. Eng. ›› 2015, Vol. 9 ›› Issue (4) : 441 -447. DOI: 10.1007/s11709-015-0319-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Thermo-elastic extended meshfree method for fracture without crack tip enrichment

Author information +
History +
PDF (224KB)

Abstract

This is the first manuscript presenting an extended meshfree method for thermo- elastic fracture which does not exploit a crack tip enrichment. The crack is modeled by partition of unity enrichment of the displacement and temperature field. Only a step function is employed that facilitates the implementation. To ensure that crack tip is at the correct position, a Lagrange multiplier field ahead of the crack tip is introduced along a line. The Lagrange multiplier nodal parameters are discretised with the available meshfree functions. Two benchmark examples illustrate the efficiency of the method.

Keywords

meshfree method / thermo-elasticity

Cite this article

Download citation ▾
A. ASADPOUR. Thermo-elastic extended meshfree method for fracture without crack tip enrichment. Front. Struct. Civ. Eng., 2015, 9(4): 441-447 DOI:10.1007/s11709-015-0319-5

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Meshfree methods have allowed the solution of many problems where classical methods such as finite elements had difficulties. Phenomena such as fracture [ 17], large deformations [ 812] and fluid-structure interaction [ 1316] are classical applications where meshfree methods have advantages. Concerning fracture, partition of unity enrichment originally employed in the extended finite element method [ 17, 18] are effective methods to model fracture also in meshfree methods as in Ref. [ 1923]. Alternatives to XFEM or XIGA [ 24, 25] are efficient remeshing techniques such as proposed by Refs. [ 2630] or multiscale methods [ 3139]. Parition of unity methods are based on the decomposition of the displacement field into a continuous displacement field and a discontinuous displacement field. The discontinuous displacement field has been often achieved by adding additional degrees of freedom which are multiplied with enriched shape functions. Normally, one distinguishes between crack tip enrichment functions and step enrichment functions for fracture problems. Crack tip enrichment functions in the context of meshfree methods have been used for instance by [ 21, 40, 41]. While it is straightforward to omit the crack tip enrichment in finite element analysis, it causes difficulties in meshfree methods [ 42, 43]. One difficulty is the wrong positioning of the crack tip. Some simple criteria based on the adjustment of the domain of influence have been proposed by [ 43] but they seem to be inadequate for 3D and require also relocation of the nodes. Another alternative is based on Lagrange multipliers [ 42]. A good overview on modeling fracture with partition of unity methods in three dimensions is given in Ref. [ 44]. Alternative methods to partition of unity enriched meshfree methods employ the visibility method [ 2, 45, 46], transparency or diffraction method [ 47, 48] or simpler strategies of enrichment such as the cracking particles method [ 49] or slight variations of it [ 50, 51].

While most of the above mentioned approaches are focus on fracture for pure mechanical problems, there are comparatively few methods for thermo-elastic fracture. A few contributions exist in the context of the extended finite element method, see e.g., Refs. [ 5254]. However, there are only a few papers on thermo-elastic partition of unity enriched meshfree methods. All approaches employ a crack tip enrichment. In Ref. [ 55] for instance, the formulation presented is incorrect as it shows a symmetric final system of equations though the thermo-elasticity equations are uncoupled. In particular, there does not exist a partition of unity enriched meshfree method for thermo-elastic fracture. This formulation is proposed in this manuscript.

The manuscript is structured as follows: In the next section, the governing equations in weak form is stated. The discretization of the mechanical and thermal field is explained next before the final discrete system of equations are derived. Two benchmark problems conclude the manuscripts.

Weak form of the governing equations

The weak form of our governing equations are the equation of equilibrium and the heat equation. In the uncoupled thermo-elasticity problem, the thermal field influences the mechanical field but not vice versa. The weak form can be stated as variational form: Find the displacement field uU and temperature field T Γ for all test functions δuU0 and δT Γ 0 such that

Ω δ i j M σ i j d Ω Ω δ u i b i d Ω Γ t δ u i t i d Γ = 0 , Ω δ q i k q i d Ω + Ω δ T Q d Ω Γ q δ T q d Γ = 0 ,

where Ω denotes the domain of the continuum and the boundary Γ = Γ u Γ t Γ c = Γ T Γ q with Γ u Γ t = 0 , Γ c Γ t = 0 , Γ u Γ c = 0 ; ΓT consists of boundaries where temperature and flux is imposed on Γq ; traction and displacements are imposed on Γt and Γu, respectively, and Γc denotes the crack boundary. The solution spaces of admissible test functions δui and δT and trial functions uiU and T Γ are given by

U = { u i | u i H 1 ,   u i = u i   o n   Γ u ,   u i   d i s c o n t i n u o u s   o n   Γ c } , U 0 = { δ u i | δ u i H 1 ,   δ u i = 0 i   o n   Γ u ,   δ u i   d i s c o n t i n u o u s   o n   Γ c } , Γ = { T | T H 1 ,   T = T i   o n   Γ T ,   T   d i s c o n t i n u o u s   o n   Γ T } , Γ 0 = { δ T | δ T H 1 ,   δ T = 0   o n   Γ T ,   δ T   d i s c o n t i n u o u s   o n   Γ T } ,

where H is a Sobolev space.

Discetization of the displacement and temperature field

The thermo-elasticity problem requires the discretization of the displacement field and the temperature field. Accounting for the jump in both fields across the crack surface, the approximation is given by

u h ( X ) = I N N I   ( X ) u I   + I N c N ˜ I   ( X ) u ˜ I , T h ( X ) = I N N I   ( X ) T I   + I N c N ˜ I   ( X ) T ˜ I ,

where uI and TI are the nodal parameters of the continuous displacement and temperature field, respectively, while the nodal parameters u ˜ I and T ˜ I denote the nodal parameters of the discontinuous displacement and temperature field; N and Nc are the set of nodes in the entire discretization and close to the crack surface, respectively. The shape functions N I   ( X ) are constructed based on a moving least squares approximation as in the element-free Galerkin method [ 46] and are given by:

N I ( X ) = p T ( x ) A 1 ( x ) R I ( x ) ,

where

R I   ( X ) = w ( x x I , h ) p T ( X I )

A I ( X ) = I W w ( x x I , h ) p ( X I ) p T ( X I ) .

w(XXI,, h) denoting the weighting function with support size h and with linear polynomial basis functions pI (x) [1 x y]. The enriched (or discontinuous shape functions N ˜ I ( X ) are constructed by multiplying the standard shape functions NI (X) with a discontinuous enrichment function which ensures that the displacement field and the temperature field is discontinuous along the crack surface. We have used the step function:

S = { 1 n ( x x c ) < 0 ; + 1 n ( x x c ) > 0 ,

where n is the normal vector to the crack surface and xc is a point on the crack surface; n ( x x c ) = 0 identifies a point on the crack surface. However, this will never occur in practice as commonly the distance of quadrature points in the interior of the domain (not on the crack surface) are determined. The crack surface is represented by a set of piecewise linear crack segments.

Discrete governing equations

To derive the discrete equations, we substitute the discretization of the displacement field and temperature field as well as their spatial derivative into the weak form, Eq. (1). After some algebra, the well-known discrete equation is obtained:

K D = F ,

where K denotes the system’s global stiffness matrix, F is the global force vector and the nodal parameters are stored in the vector D = [ u , u ˜ , T , T ˜ ] T where the nodal parameters of Eq. (3) are stored in the associated vectors, e.g., TI is stored in T. This system of equation is smaller compared to the approach in Ref. [ 55]. However, in order to ensure that the crack tip ends at the correct position, we introduce a Lagrange multiplier field as suggested by Ref. [ 43] for a pure mechanical problem. We extend it here to thermo-mechanical problems. Therefore, we need to ensure that also the additional degrees of freedom of the thermal field vanish yielding. The discretization of the Lagrange multiplier field for the mechanical and thermal part is given by:

λ M h ( X ) = I N N I   ( X ) I M I   , λ T h ( X ) = I N N I   ( X ) I T I   ,

the index M and T referring to the mechanical and the thermal field, respectively. Enforcing the crack to close along the extension line of the crack introduced into the formulation as constraint condition finally yields the following system of equations:

K ˜ D ˜ = F ˜ ,

or

[ K M M u u K M M u u ˜ 0 K M T u T K M T u T ˜ 0 K M M u ˜ u K M M u ˜ u ˜ G M L u ˜ L K M T u T ˜ K M T u ˜ T ˜ 0 0 0 [ G M L u ˜ L ] 0 0 0 0 0 0 K T T T T K T T T T ˜ 0 0 0 0 K T T T ˜ T K T T T ˜ T ˜ 0 0 0 0 0 0 [ G T L T ˜ L ] T ] [ u u ˜ I M T T ˜ I T ] [ F M u F M u ˜ 0 F T T F T T ˜ 0 ] .

In these equations, the subscripts M, T and L refer to the mechanical field, temperature field and the Lagrange-multiplier field similarly to the notation of the superscripts which refer to the degrees of freedom (DOF). The matrices are given by:
K M M u u = Ω B M u C B M u T d Ω , K M M u u ˜ = Ω B M u C B M u ˜ T d Ω , K M M u ˜ u ˜ = Ω B M u ˜ C B M u ˜ T d Ω , K M T u T = Ω B M u C α T N T u T d Ω , K M T u T ˜ = Ω B M u C α T N T T ˜ T d Ω , K M T u T ˜ = Ω B M T ˜ C α T N T u T d Ω , K M T u ˜ T ˜ = Ω B M u ˜ C α T N T T ˜ T d Ω , K T T T T = Ω B T T D B T T T d Ω , K T T T T ˜ = Ω B T T D B T T ˜ T d Ω , K T T T ˜ T ˜ = Ω B T T ˜ D B T T ˜ T d Ω .

where the derivatives of the EFG shape functions (the standard and the enriched ones) are stored in the vector BIJI = M,T standard for the mechanical or temperature and J referring to the DOF; αT is the thermal conductivity and D is a diagonal matrix containing the diffusity k on the main diagonal (assuming isotropy). The right hand side vectors are given by
F M u = Ω N M u bd Ω + Γ t N M u t d Γ , F M a = Ω N M u ˜ bd Ω + Γ t N M T ˜ t d Γ , F T u = Ω N T T Qd Ω + Γ q N T T q d Γ , F T a = Ω N T T ˜ Qd Ω + Γ q N T T ˜ q d Γ .

All integrals are evaluated by 4 × 4 Gauss quadrature based on a background mesh with bi-linear FE shape functions which is formed by the meshfree nodes. Background cells cut by the discontinuity are integrated by modifying the quadrature weights as proposed in Ref [ 10].

Results

Center crack problem

Consider a rectangular plate with a center crack as shown in Fig. 1(a). We set the length Lequal to the width W and assume temperature boundary conditions of 10 degree celsius. Though there is no analytical solution available, the results can be compared to results from other researchers [ 29, 35] who studied this problem as well. Table 1 illustrates that the results presented in this manuscript are in close agreement to the solutions in [ 56, 57]. The temperature distribution in the specimen at the end of the computation is depicted in Fig. 2(a).

Inclined crack problem

Next, we modify the first problem by inclining the crack as shown in Fig. 2 which also illustrates the temperature distribution. The stress intensity factors are again compared to a solution presented in Refs. [ 56, 57] and they show a good agreement, see the Tables 2 and 3. Table 2. In addition to the results for various angles α for a selected a/W value, also results for different values of a/W are shown for an angle of 30 degree.

Conclusiton and research perspectives

We presented a new partition of unity enriched meshfree method for thermo- elastic fracture. Therefore, the EFG method has been employed. The displacement field and temperature field have been enriched with step functions. The method has been tested for stationary cracks. The results obtained by this method was compared to two well-known benchmark problems available in the literature and the agreement of the presented method and other computational methods were good. Furthermore, the method requires less degrees of freedom due to the presence of an enrichment. In the future, the method will be used to model more complex problems including crack growths.

References

[1]

Amiri FMillan DShen YRabczuk TArroyo M. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics201469: 102–109

[2]

Belytschko TTabbara M. Dynamic fracture using element-free galerkin methods. International Journal for Numerical Methods in Engineering199639(6): 923–938

[3]

Belytschko TLu Y YGu L. Crack propagation by element-free galerkin methods. Engineering Fracture Mechanics199551(2): 295–315

[4]

Fleming MChu Y AMoran BBelytschko T. Enriched element-free galerkin methods for crack tip fields. International Journal for Numerical Methods in Engineering199740(8): 1483–1504

[5]

Hao SLiu W KKlein P ARosakis A J. Modeling and simulation of intersonic crack growth. International Journal of Solids and Structures200441(7): 1773–1799

[6]

Idelsohn S ROnate E. To mesh or not to mesh, that is the question…. Computer Methods in Applied Mechanics and Engineering2006195(37−40): 4681–4696

[7]

Hao SLiu W K. Moving particle finite element method with super- convergence: Nodal integration formulation and applications. Computer Methods in Applied Mechanics and Engineering2006195(44−47): 6059–6072

[8]

Li SHao WLiu W K. Mesh-free simulations of shear banding in large deformation. International Journal of Solids and Structures200037(48−50): 7185–7206

[9]

Li SHao WLiu W K. Numerical simulations of large deformation of thin shell structures using meshfree methods. Computational Mechanics200025(2−3): 102–116

[10]

Rabczuk TBelytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering2007196(29-30): 2777–2799

[11]

Ren BLi S. Meshfree simulations of plugging failures in high-speed impacts. Computers & Structures201088(15-16): 909–923

[12]

Wong SShie Y. Large deformation analysis with galerkin based smoothed particle hydrodynamics. CMES-Computer Modeling in Engineering & Sciences200836(2): 97–118

[13]

Antoci CGallati MSibilla S. Numerical simulation of fluid- structure interaction by sph. Computers & Structures200785(11−14): 879–890

[14]

Feldman JBonet J. Dynamic refinement and boundary contact forces in sph with applications in fluid flow problems. International Journal for Numerical Methods in Engineering200772(3): 295–324

[15]

Oñate EIdelsohn SZienkiewicz O CTaylor R L. A finite point method in computational mechanics: Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering199639(22): 3839–3866

[16]

Rabczuk TGracie RSong J HBelytschko T. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering201081: 48–71

[17]

Belytschko TBlack T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering199945(5): 601–620

[18]

Moes NDolbow JBelytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering199946(1): 133–150

[19]

Amiri FAnitescu CArroyo MBordas S P ARabczuk T. XLME interpolants, a seamless bridge between xfem and enriched meshless methods. Computational Mechanics201453(1): 45–57

[20]

Rabczuk TAreias P. A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Computer Modeling in Engineering & Sciences200616(2): 115–130

[21]

Rabczuk TZi G. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics200739(6): 743–760

[22]

Rabczuk TAreias P M ABelytschko T. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering200772(5): 524–548

[23]

Rabczuk TZi GBordas SNguyen-Xuan H. A geometrically non- linear three dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics200875(16): 4740–4758

[24]

Ghorashi S SValizadeh NMohammadi SRabczuk T. T-spline based xiga for fracture analysis of orthotropic media. Computers & Structures2015147: 138–146

[25]

Nguyen-Thanh NValizadeh NNguyen M NNguyen-Xuan HZhuang XAreias PZi GBazilevs YDe Lorenzis LRabczuk T. An extended isogeometric thin shell analysis based on kirchhoff-love theory. Computer Methods in Applied Mechanics and Engineering2015284: 265–291

[26]

Areias PRabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering201394(12): 1099–1122

[27]

Areias PRabczuk TCamanho P P. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics201352(4): 931–947

[28]

Areias PRabczuk TDias da Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics2013110: 113–137

[29]

Areias PRabczuk TCamanho P P. Finite strain fracture of 2d problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics201472(1): 50–63

[30]

Nguyen-Xuan HLiu G RBordas SNatarajan SRabczuk T. An adaptive singular es-fem for mechanics problems with singular field of arbitrary order. Computer Methods in Applied Mechanics and Engineering2013253: 252–273

[31]

Budarapu P RGracie RBordas S P ARabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics201453(6): 1129–1148

[32]

Budarapu P RGracie RYang S WZhuang XRabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics201469: 126–143

[33]

Nanthakumar S SLahmer TRabczuk T. Detection of flaws in piezoelectric structures using extended fem. International Journal for Numerical Methods in Engineering201396(6): 373–389

[34]

Silani MTalebi HZiaei-Rad SHamouda A MZi GRabczuk T. A three dimensional extended arlequin method for dynamic fracture. Computational Materials Science201496: 425–431

[35]

Silani MZiaei-Rad STalebi HRabczuk T. A semi-concurrent multiscale approach for modeling damage in nanocomposites. Theoretical and Applied Fracture Mechanics201474(1): 30–38

[36]

Talebi, HSilani MBordas S P AKerfriden PRabczuk T. Molecular dynamics/xfem coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering201311(6): 527–541

[37]

Talebi HSilani MBordas S P AKerfriden PRabczuk T. A computational library for multiscale modeling of material failure. Computational Mechanics201453(5): 1047–1071

[38]

Talebi HSilani MRabczuk T. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software201580: 82–92

[39]

Yang S WBudarapu P RMahapatra D RBordas S P AZi GRabczuk T. A meshless adaptive multiscale method for fracture. Computational Materials Science201596(PB): 382–395

[40]

Belytschko TFleming M. Smoothing, enrichment and contact in the element free galerkin method. Computers & Structures199971(2): 173–195

[41]

Ventura GXu JBelytschko T. A vector level set method and new discontinuity approximation for crack growth by efg. International Journal for Numerical Methods in Engineering200254(6): 923–944

[42]

Bordas SRabczuk TZi G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by extrinsic discontinuous enrichment of meshfree methods without asymptotic enrichment. Engineering Fracture Mechanics200875: 943–960

[43]

Zi GRabczuk TWall W. Extended meshfree methods without branch enrichment for cohesive cracks. Computational Mechanics200740(2): 367–382

[44]

Rabczuk TBordas SZi G. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures201088(23−24): 1391–1411

[45]

Belytschko TLu Y YGu LTabbara M. Element-free galerkin methods for static and dynamic fracture. International Journal of Solids and Structures199532(17−18): 2547–2570

[46]

Belytschko TLu Y YGu L. Element-free galerkin methods. International Journal for Numerical Methods in Engineering199437(2): 229–256

[47]

Belytschko TKrongauz YOrgan DFleming MKrysl P. Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering1996139(1−4): 3–47

[48]

Organ DFleming MTerry TBelytschko T. Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Computational Mechanics199618(3): 225–235

[49]

Rabczuk TBelytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering200461(13): 2316–2343

[50]

Sageresan NDrathi R. Crack propagation in concrete using meshless method. CMES-Computer Modeling in Engineering & Sciences200832(2): 103–112

[51]

Wang H XWang S X. Analysis of dynamic fracture with cohesive crack segment method. CMES-Computer Modeling in Engineering & Sciences200835(3): 253–274

[52]

Areias P M ABelytschko T. Two-scale method for shear bands: thermal effects and variable bandwidth. International Journal for Numerical Methods in Engineering200772(6): 658–696

[53]

Duflot M. The extended finite element method in thermoelastic fracture mechanics. International Journal for Numerical Methods in Engineering200874(5): 827–847

[54]

Le PMai-Duyand NTran-Cong T. A numerical study of strain localization in elasto-thermo-viscoplastic materials using radial basis function networks. CMC-Computers Materials & Continua20075: 129–150

[55]

Wang H S. An extended element-free galerkin method for thermo- mechanical dynamic fracture in linear and nonlinear materials. Journal of Engineering Mechanics201598: 366–271

[56]

Murakami Y. Stress Intensity Factors Handbook. Pergamon Press, Oxford1987

[57]

Prasad N N VAliabadi M HRooke D P. The dual boundary element method for thermoelstic crack growth. International Journal of Fracture199466(3): 255–272

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (224KB)

3599

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/