An extended thermo-mechanically coupled algorithm for simulation of superelasticity and shape memory effect in shape memory alloys

S. HASHEMI , H. AHMADIAN , S. MOHAMMADI

Front. Struct. Civ. Eng. ›› 2015, Vol. 9 ›› Issue (4) : 466 -477.

PDF (3119KB)
Front. Struct. Civ. Eng. ›› 2015, Vol. 9 ›› Issue (4) : 466 -477. DOI: 10.1007/s11709-015-0300-3
RESEARCH ARTICLE
RESEARCH ARTICLE

An extended thermo-mechanically coupled algorithm for simulation of superelasticity and shape memory effect in shape memory alloys

Author information +
History +
PDF (3119KB)

Abstract

Thermo-mechanical coupling in shape memory alloys is a very complicated phenomenon. The heat generation/absorption during forward/reverse transformation can lead to temperature-dependent variation of its mechanical behavior in the forms of superelasticity and shape memory effect. However, unlike the usual assumption, slow loading rate cannot guarantee an isothermal process. A two-dimensional thermo-mechanically coupled algorithm is proposed based on the original model of Lagoudas to efficiently model both superelasticity and shape memory effects and the influence of various strain rates, aspect ratios and boundary conditions. To implement the coupled model into a finite element code, a numerical staggered algorithm is employed. A number of simulations are performed to verify the proposed approach with available experimental and numerical data and to assess its efficiency in solving complex SMA problems.

Keywords

shape memory alloy / thermo-mechanical coupling / superplasticity / shape memory effect

Cite this article

Download citation ▾
S. HASHEMI, H. AHMADIAN, S. MOHAMMADI. An extended thermo-mechanically coupled algorithm for simulation of superelasticity and shape memory effect in shape memory alloys. Front. Struct. Civ. Eng., 2015, 9(4): 466-477 DOI:10.1007/s11709-015-0300-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shaw JKyriakides S. Thermomechanical aspects of NiTi. Journal of the Mechanics and Physics of Solids199543(8): 1243–1281

[2]

Chang B. Shaw, Iadicola M. Thermodynamics of shape memory alloy wire: Modeling, experiments, and application. Continuum Mechanics and Thermodynamics200618(1−2): 83–118

[3]

Morin CMoumni Z. Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling. International Journal of Plasticity201127: 1959–1980

[4]

Desroches RMcCormick JDelemont M. Cyclic properties of superelastic shape memory alloy wires and bars. Journal of Structural Engineering2004130(1): 38–46

[5]

Mirzaeifar RDesroches RYavari A. Analysis of the rate-dependent coupled thermo-mechanical response of shape memory alloy bars and wires in tension. Continuum Mechanics and Thermodynamics201123: 363–385

[6]

Lagoudas D CBo ZQidwai M A. A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites. Mechanics of Composite Materials and Structures19963: 153–179

[7]

Qidwai M ALagoudas D C. Numerical implementation of shape memory alloy thermomechanical constitutive model using return mapping algorithm. International Journal for Numerical Methods in Engineering200047: 1123–1168

[8]

Lagoudas D C. Shape Memory Alloys, Modeling and Engineering Applications. Springer2008

[9]

He Y JSun Q P. On non-monotonic rate dependence of stress hysteresis of superelastic shape memory alloy bars. International Journal of Solids and Structures201148: 1688–1695

[10]

Zhange X HFeng PHe Y JYu T XSun Q P. Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips. International Journal of Mechanical Sciences201052: 1660–1670

[11]

Morin CMoumni ZZaki W. A constitutive model for shape memory alloys accounting for thermomechanical coupling. International Journal of Plasticity201127: 748–767

[12]

Auricchio FTaylor R LLubliner J. Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Computer Methods in Applied Mechanics and Engineering1997146(3−4): 281–312

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (3119KB)

2474

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/