Characterization of random stress fields obtained from polycrystalline aggregate calculations using multi-scale stochastic finite elements

Bruno SUDRET, Hung Xuan DANG, Marc BERVEILLER, Asmahana ZEGHADI, Thierry YALAMAS

PDF(3702 KB)
PDF(3702 KB)
Front. Struct. Civ. Eng. ›› 2015, Vol. 9 ›› Issue (2) : 121-140. DOI: 10.1007/s11709-015-0290-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Characterization of random stress fields obtained from polycrystalline aggregate calculations using multi-scale stochastic finite elements

Author information +
History +

Abstract

The spatial variability of stress fields resulting from polycrystalline aggregate calculations involving random grain geometry and crystal orientations is investigated. A periodogram-based method is proposed to identify the properties of homogeneous Gaussian random fields (power spectral density and related covariance structure). Based on a set of finite element polycrystalline aggregate calculations the properties of the maximal principal stress field are identified. Two cases are considered, using either a fixed or random grain geometry. The stability of the method w.r.t the number of samples and the load level (up to 3.5% macroscopic deformation) is investigated.

Keywords

polycrystalline aggregates / crystal plasticity / random fields / spatial variability / correlation structure

Cite this article

Download citation ▾
Bruno SUDRET, Hung Xuan DANG, Marc BERVEILLER, Asmahana ZEGHADI, Thierry YALAMAS. Characterization of random stress fields obtained from polycrystalline aggregate calculations using multi-scale stochastic finite elements. Front. Struct. Civ. Eng., 2015, 9(2): 121‒140 https://doi.org/10.1007/s11709-015-0290-1

References

[1]
Tanguy B. Modélisation de l’essai Charpy par l’approche locale de la rupture – application au cas de l’acier 16MND5 dans le domaine de la transition. Ph.D thesis, École des Mines Paris Tech, 2001
[2]
Beremin F, Pineau A, Mudry F, Devaux J C, D’Escatha Y, Ledermann P. A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metallurgical Transactions, 1983, 14A(11): 2277–2287
[3]
Mathieu J, Berveiller S, Inal K, Diard O. Microscale modelling of cleavage fracture at low temperatures: influence of heterogeneities at the granular scale. Fatigue & Fracture of Engineering Materials & Structures, 2006, 29(9—10): 725–737
[4]
Mathieu J, Inal K, Berveiller S, Diard O. A micromechanical interpretation of the temperature dependence of Beremin model parameters for French RPV steel. Journal of Nuclear Materials, 2010, 406(1): 97–112
[5]
Graham-Brady L, Arwade S, Corr D, Gutiérrez M, Breysse D, Grigoriu M, Zabaras N. Probability and materials: from nano- to macro-scale – a summary. Probabilistic Engineering Mechanics, 2006, 21(3): 193–199
[6]
Stefanou G. The stochastic finite element method: past, present and future. Computer Methods in Applied Mechanics and Engineering, 2009, 198(9-12): 1031–1051
[7]
Xu X F, Chen X. Stochastic homogenization of random elastic multi-phase composites and size quantification of representative volume element. Mechanics of Materials, 2009, 41(2): 174–186
[8]
Graham L, Baxter S. Simulation of local material properties based on moving-window GMC. Probabilistic Engineering Mechanics, 2001, 16(4): 295–305
[9]
Liu H, Arwade S, Igusa T. Random composites characterization using a classifier model. Journal of Engineering Mechanics, 2007, 133(2): 129–140
[10]
Chung D B, Gutiérrez M A, Borst R. Object-oriented stochastic finite element analysis of fibre metal laminates. Computer Methods in Applied Mechanics and Engineering, 2005, 194(12—16): 1427–1446
[11]
Chakraborty A, Rahman S. Stochastic multiscale models for fracture analysis of functionally graded materials. Engineering Fracture Mechanics, 2008, 75(8): 2062–2086
[12]
Arwade S, Grigoriu M. Probabilistic model for polycrystalline microstructures with application to intergranular fracture. Journal of Engineering Mechanics, 2004, 130(9): 997–1005
[13]
Grigoriu M. Nearest neighbor probabilistic model for aluminum polycrystals. Journal of Engineering Mechanics, 2010, 136(7): 821–829
[14]
Li Z, Wen B, Zabaras N. Computing mechanical response variability of polycrystalline microstructures through dimensionality reduction techniques. Computational Materials Science, 2010, 49(3): 568–581
[15]
Kouchmeshky B, Zabaras N. Microstructure model reduction and uncertainty quantification in multiscale deformation processes. Computational Materials Science, 2010, 48(2): 213–227
[16]
Kouchmeshky B, Zabaras N. The effect of multiple sources of uncertainty on the convex hull of material properties of polycrystals. Computational Materials Science, 2009, 47(2): 342–352
[17]
Dang H X, Sudret B, Berveiller B. Benchmark of random fields simulation methods and links with identification methods. In: Faber M, Köhler J, Nishijima K. eds. Proceedings of the 11th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP11), Zurich, Switzerland, 2011
[18]
Stoica P, Moses R. Introduction to spectral analysis. Prentice Hall, 1997
[19]
Li J. Spectral estimation. Dep. of Electrical and Computer Engineering – University of Florida, 2005
[20]
Cramer H, Leadbetter M. Stationary and Related Processes. Wiley & Sons, 1967
[21]
Vanmarcke E. Random Fields: Analysis and Synthesis. Cambridge, Massachussets: The MIT Press, 1983
[22]
Preumont A. Vibrations aléatoires et analyse spectrale. Presses polytechniques et universitaires romandes, 1990
[23]
Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431–441
[24]
Franciosi P. The concepts of latent hardening and strain hardening in metallic single crystals. Acta Metallurgica, 1985, 33(9): 1601–1612
[25]
Meric L, Cailletaud G. Single crystal modelling for structural calculation: Part 2- F.E. Implementation. Journal of Engineering Materials and Technology, 1991, 113(1): 171–182
[26]
Mathieu J. Analyse et modélisation micromécanique du comportement et de la rupture fragile de l’acier 16MND5: prise en compte des hétérogénéités microstructurales. Ph.D thesis, École Nationale Supérieure des Arts et Métiers, 2006
[27]
Gilbert E. Random subdivisions of space into crystals. Annals of Mathematical Statistics, 1962, 33(3): 958–972
[28]
Barber C, Dobkin D, Huhdanpaa H. The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 1996, 22(4): 469–483
[29]
Lautensack C, Zuyev S. Random Laguerre tessellations. Advances in Applied Probability, 2008, 40(3): 630–650
[30]
Zhang P, Balint D, Lin J. Controlled Poisson Voronoi tessellation for virtual grain structure generation: a statistical evaluation. Philosophical Magazine, 2011, 91(36): 4555–4573
[31]
Leonardia A, Scardia P, Leonia M. Realistic nano-polycrystalline microstructures: beyond the classical Voronoi tessellation. Philosophical Magazine, 2012, 92(8): 986–1005
[32]
Laug P, Borouchaki H. BLSURF-mesh generator for composite parametric surface. Tech. Rep. 0235, INRIA, User’s Manual, 1999
[33]
Perrin G, Soize C, Duhamel D, Funfschilling C. A posteriori error and optimal reduced basis for stochastic processes defined by a finite set of realizations. SIAM/ASA J. Uncertainty Quantification, 2014, 2(1): 745–762
[34]
Dang H, Sudret B, Berveiller M, Zeghadi A. Identification of random stress fields from the simulation of polycrystalline aggregates. In: Proceedings of the 1st International Conference Computational Modeling of Fracture and Failure of Materials and Structures (CFRAC). Barcelona, Spain, 2011
[35]
Dang H X, Berveiller M, Zeghadi A, Sudret B, Yalamas T. Introducing stress random fields of polycrystalline aggregates into the local approach to fracture. In: Deodatis G. ed. Proceedings of the 11th International Conference Structural Safety and Reliability (ICOSSAR’2013). New York, USA, 2013

Acknowledgements

The second author is funded by a CIFRE grant at Phimeca Engineering S.A. subsidized by the French Agence Nationale de la Recherche et de la Technologie (convention number 027/2010). The research project is supported by EDF R&D under contract #8610-AAP5910056413. These supports are gratefully acknowledged.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(3702 KB)

Accesses

Citations

Detail

Sections
Recommended

/