Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters
Yu Guo, Yang Zhao, Qiao Ling, Si Zhou, Jijun Zhao
Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters
Cluster-assembled materials have long been pursued as they can create some unprecedented and desirable properties. Herein, we assemble a class of one-dimensional (1D) ReNX4 (X = F, Cl, Br and I) and MF5 (M = V, Nb and Ta) nanowires by covalently linking their superatomic clusters. These assembled 1D nanowires exhibit outstanding energetic and dynamic stabilities, and hold sizable spontaneous polarization, low ferroelectric switching barriers and high critical temperature. Their superior ferroelectricity is originated from d0-configuration transition metal ions generated by the hybridization of empty d orbitals of metal atoms and p orbitals of non-metal atoms. These critical insights pave a new avenue to fabricate 1D ferroelectrics toward the development of miniaturized and high-density electronic devices using building blocks as cluster with precise structures and functionalities.
ferroelectricity / superatom / cluster-assembled materials / electronic properties / first-principles calculations
[1] |
K.ZhangC. WangM.ZhangZ.BaiF.F. Xie Y.Z. TanY. GuoK.J. HuL.CaoS.Zhang X.TuD.Pan L.KangJ. ChenP.WuX.WangJ.Wang J.LiuY. SongG.WangF.SongW.Ji S.Y. XieS. F. ShiM.A. ReedB.Wang, A Gd@C82 single-molecule electret, Nat. Nanotechnol. 15(12), 1019 (2020)
|
[2] |
J. Müller, T. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, and L. Frey, Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications, Appl. Phys. Lett. 99(11), 112901 (2011)
CrossRef
ADS
Google scholar
|
[3] |
M.SiA.K. Saha S.GaoG. QiuJ.QinY.DuanJ.Jian C.NiuH. WangW.WuS.K. GuptaP.D. Ye, A ferroelectric semiconductor field-effect transistor, Nat. Electron. 2(12), 580 (2019)
|
[4] |
P. Muralt, Ferroelectric thin films for micro-sensors and actuators: A review, J. Micromech. Microeng. 10(2), 136 (2000)
CrossRef
ADS
Google scholar
|
[5] |
J. Li, S. Hou, Y. R. Yao, C. Zhang, Q. Wu, H. C. Wang, H. Zhang, X. Liu, C. Tang, M. Wei, W. Xu, Y. Wang, J. Zheng, Z. Pan, L. Kang, J. Liu, J. Shi, Y. Yang, C. J. Lambert, S. Y. Xie, and W. Hong, Room-temperature logic-in-memory operations in single-metallofullerene devices, Nat. Mater. 21(8), 917 (2022)
CrossRef
ADS
Google scholar
|
[6] |
L. W. Martin and A. M. Rappe, Thin-film ferroelectric materials and their applications, Nat. Rev. Mater. 2(2), 16087 (2016)
CrossRef
ADS
Google scholar
|
[7] |
M. Wu and P. Jena, The rise of two-dimensional van der Waals ferroelectrics, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8(5), e1365 (2018)
CrossRef
ADS
Google scholar
|
[8] |
C. C. Chiang, V. Ostwal, P. Wu, C. S. Pang, F. Zhang, Z. Chen, and J. Appenzeller, Memory applications from 2D materials, Appl. Phys. Rev. 8(2), 021306 (2021)
CrossRef
ADS
Google scholar
|
[9] |
L. Qi, S. Ruan, and Y. J. Zeng, Review on recent developments in 2D ferroelectrics: Theories and applications, Adv. Mater. 33(13), 2005098 (2021)
CrossRef
ADS
Google scholar
|
[10] |
S. Horiuchi and Y. Tokura, Organic ferroelectrics, Nat. Mater. 7(5), 357 (2008)
CrossRef
ADS
Google scholar
|
[11] |
Y. Tokura, S. Koshihara, N. Iwasawa, and G. Saito, Domain-wall dynamics in organic charge-transfer compounds with one-dimensional ferroelectricity, Phys. Rev. Lett. 63(21), 2405 (1989)
CrossRef
ADS
Google scholar
|
[12] |
B. Gorshunov, V. Torgashev, E. Zhukova, V. Thomas, M. Belyanchikov, C. Kadlec, F. Kadlec, M. Savinov, T. Ostapchuk, J. Petzelt, J. Prokleška, P. V. Tomas, E. V. Pestrjakov, D. A. Fursenko, G. S. Shakurov, A. S. Prokhorov, V. S. Gorelik, L. S. Kadyrov, V. V. Uskov, R. K. Kremer, and M. Dressel, Incipient ferroelectricity of water molecules confined to nano-channels of beryl, Nat. Commun. 7(1), 12842 (2016)
CrossRef
ADS
Google scholar
|
[13] |
B. A. Hernandez, K. S. Chang, E. R. Fisher, and P. K. Dorhout, Sol−gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes, Chem. Mater. 14(2), 480 (2002)
CrossRef
ADS
Google scholar
|
[14] |
P. Jena and Q. Sun, Super atomic clusters: Design rules and potential for building blocks of materials, Chem. Rev. 118(11), 5755 (2018)
CrossRef
ADS
Google scholar
|
[15] |
J. Zhao, Q. Du, S. Zhou, and V. Kumar, Endohedrally doped cage clusters, Chem. Rev. 120(17), 9021 (2020)
CrossRef
ADS
Google scholar
|
[16] |
Z. Luo and A. W. Castleman, Special and general superatoms, Acc. Chem. Res. 47(10), 2931 (2014)
CrossRef
ADS
Google scholar
|
[17] |
B. Choi, K. Lee, A. Voevodin, J. Wang, M. L. Steigerwald, P. Batail, X. Zhu, and X. Roy, Two-dimensional hierarchical semiconductor with addressable surfaces, J. Am. Chem. Soc. 140(30), 9369 (2018)
CrossRef
ADS
Google scholar
|
[18] |
E. J. Telford, J. C. Russell, J. R. Swann, B. Fowler, X. Wang, K. Lee, A. Zangiabadi, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Batail, X. Zhu, J. A. Malen, C. R. Dean, and X. Roy, Doping-induced superconductivity in the van der Waals superatomic crystal Re6Se8Cl2, Nano Lett. 20(3), 1718 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[19] |
X. Zhong, K. Lee, B. Choi, D. Meggiolaro, F. Liu, C. Nuckolls, A. Pasupathy, F. De Angelis, P. Batail, X. Roy, and X. Zhu, Superatomic two-dimensional semiconductor, Nano Lett. 18(2), 1483 (2018)
CrossRef
ADS
Google scholar
|
[20] |
X. Roy, C. H. Lee, A. C. Crowther, C. L. Schenck, T. Besara, R. A. Lalancette, T. Siegrist, P. W. Stephens, L. E. Brus, P. Kim, M. L. Steigerwald, and C. Nuckolls, Nanoscale atoms in solid-state chemistry, Science 341(6142), 157 (2013)
CrossRef
ADS
Google scholar
|
[21] |
Y. Guo, Q. Du, P. Wang, S. Zhou, J. Zhao, and Two-dimensional oxides assembled by M4 clusters (M= B,Mo, and Te), Phys. Rev. Res. 3(4), 043231 (2021)
CrossRef
ADS
Google scholar
|
[22] |
Q. Du, Z. Wang, S. Zhou, J. Zhao, and V. Kumar, Searching for cluster Lego blocks for three-dimensional and two-dimensional assemblies, Phys. Rev. Mater. 5(6), 066001 (2021)
CrossRef
ADS
Google scholar
|
[23] |
X. Chen, G. Fei, Y. Song, T. Ying, D. Huang, B. Pan, D. Yang, X. Yang, K. Chen, X. Zhan, J. Wang, Q. Zhang, Y. Li, L. Gu, H. Gou, X. Chen, S. Li, J. Cheng, X. Liu, H. Hosono, J. Guo, and X. Chen, Superatomic-charge-density-wave in cluster-assembled Au6Te12Se8 superconductors, J. Am. Chem. Soc. 144(45), 20915 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[24] |
S. Xing, L. Wu, Z. Wang, X. Chen, H. Liu, S. Han, L. Lei, L. Zhou, Q. Zheng, L. Huang, X. Lin, S. Chen, L. Xie, X. Chen, H. J. Gao, Z. Cheng, J. Guo, S. Wang, and W. Ji, Interweaving polar charge orders in a layered metallic superatomic crystal, Phys. Rev. X 12(4), 041034 (2022)
CrossRef
ADS
Google scholar
|
[25] |
Y. Zhao, Y. Guo, Y. Qi, X. Jiang, Y. Su, and J. Zhao, Coexistence of ferroelectricity and ferromagnetism in fullerene-based one-dimensional chains, Adv. Sci. (Weinh.) 10(21), 2301265 (2023)
CrossRef
ADS
Google scholar
|
[26] |
J. R. Dilworth, Rhenium chemistry – then and now, Coord. Chem. Rev. 436, 213822 (2021)
CrossRef
ADS
Google scholar
|
[27] |
K.DehnickeJ. Straehle, N-Halogenoimido complexes of transition metals, Chem. Rev. 93(3), 981 (1993)
|
[28] |
W. Liese, K. Dehnicke, I. Walker, J. Strähle, and Darstellung und kristallstruktur von rhenium (VII)-nitridchlorid, ReNCl4, Z. Naturforsch. B. J. Chem. Sci. 34(5), 693 (1979)
CrossRef
ADS
Google scholar
|
[29] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[30] |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef
ADS
Google scholar
|
[31] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[32] |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
CrossRef
ADS
Google scholar
|
[33] |
S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73(2), 515 (2001)
CrossRef
ADS
Google scholar
|
[34] |
R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys. 72(1), 650 (1980)
CrossRef
ADS
Google scholar
|
[35] |
M. Dolg, U. Wedig, H. Stoll, and H. Preuss, Energy‐adjusted ab initio pseudopotentials for the first row transition elements, J. Chem. Phys. 86(2), 866 (1987)
CrossRef
ADS
Google scholar
|
[36] |
M.FrischG. TrucksH.SchlegelG.ScuseriaM.Robb J.CheesemanG. ScalmaniV.BaroneG.PeterssonH.Nakatsuji, Gaussian 16, Revision A. 03, Gaussian, Inc. Wallingford CT 3 (2016)
|
[37] |
T. Tsukamoto, N. Haruta, T. Kambe, A. Kuzume, and K. Yamamoto, Periodicity of molecular clusters based on symmetry-adapted orbital model, Nat. Commun. 10(1), 3727 (2019)
CrossRef
ADS
Google scholar
|
[38] |
G.HenkelmanA. ArnaldssonH.Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36(3), 354 (2006)
|
[39] |
M. Segall, R. Shah, C. J. Pickard, and M. Payne, Population analysis of plane-wave electronic structure calculations of bulk materials, Phys. Rev. B 54(23), 16317 (1996)
CrossRef
ADS
Google scholar
|
[40] |
D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)
CrossRef
ADS
arXiv
Google scholar
|
[41] |
E. Bruyer, D. Di Sante, P. Barone, A. Stroppa, M. H. Whangbo, S. Picozzi, Possibility of combining ferroelectricity, Rashba-like spin splitting in monolayers of the 1T-type transition-metal dichalcogenides MX2 (M= Mo, and W; X= S, Te), Phys. Rev. B 94(19), 195402 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[42] |
R. Fei, W. Kang, and L. Yang, Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides, Phys. Rev. Lett. 117(9), 097601 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[43] |
W. Wan, C. Liu, W. Xiao, and Y. Yao, Promising ferroelectricity in 2D group IV tellurides: A first-principles study, Appl. Phys. Lett. 111(13), 132904 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[44] |
R. E. Cohen, Origin of ferroelectricity in perovskite oxides, Nature 358(6382), 136 (1992)
CrossRef
ADS
Google scholar
|
[45] |
K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, Enhancement of ferroelectricity in strained BaTiO3 thin films, Science 306(5698), 1005 (2004)
CrossRef
ADS
Google scholar
|
[46] |
J. Rouquette, J. Haines, V. Bornand, M. Pintard, P. Papet, W. G. Marshall, and S. Hull, Pressure-induced rotation of spontaneous polarization in monoclinic and triclinic PbZr0.52Ti0.48O3, Phys. Rev. B 71(2), 024112 (2005)
CrossRef
ADS
Google scholar
|
[47] |
N. Izyumskaya, Y. I. Alivov, S. J. Cho, H. Morkoç, H. Lee, and Y. S. Kang, Processing, structure, properties, and applications of PZT thin films, Crit. Rev. Solid State Mater. Sci. 32(3−4), 111 (2007)
CrossRef
ADS
Google scholar
|
[48] |
I.Bersuker, The Jahn−Teller Effect and Vibronic Interactions in Modern Chemistry, Springer Science & Business Media: 2013
|
[49] |
J. van den Brink and D. I. Khomskii, Multiferroicity due to charge ordering, J. Phys.: Condens. Matter 20(43), 434217 (2008)
CrossRef
ADS
arXiv
Google scholar
|
[50] |
Y. Bao and F. Zhang, Electronic engineering of ABO3 perovskite metal oxides based on d0 electronic-configuration metallic ions toward photocatalytic water splitting under visible light, Small Struct. 3(6), 2100226 (2022)
CrossRef
ADS
Google scholar
|
[51] |
J. C. Wojdeł and J. Íñiguez, Testing simple predictors for the temperature of a structural phase transition, Phys. Rev. B 90(1), 014105 (2014)
CrossRef
ADS
Google scholar
|
[52] |
G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
CrossRef
ADS
Google scholar
|
[53] |
K. A. N. Duerloo, M. T. Ong, and E. J. Reed, Intrinsic piezoelectricity in two-dimensional materials, J. Phys. Chem. Lett. 3(19), 2871 (2012)
CrossRef
ADS
Google scholar
|
[54] |
K. M. Ok, E. O. Chi, and P. S. Halasyamani, Bulk characterization methods for non-centrosymmetric materials: Second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity, Chem. Soc. Rev. 35(8), 710 (2006)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |