Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters

Yu Guo, Yang Zhao, Qiao Ling, Si Zhou, Jijun Zhao

PDF(2451 KB)
PDF(2451 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (6) : 63210. DOI: 10.1007/s11467-024-1434-3
LETTER

Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters

Author information +
History +

Abstract

Cluster-assembled materials have long been pursued as they can create some unprecedented and desirable properties. Herein, we assemble a class of one-dimensional (1D) ReNX4 (X = F, Cl, Br and I) and MF5 (M = V, Nb and Ta) nanowires by covalently linking their superatomic clusters. These assembled 1D nanowires exhibit outstanding energetic and dynamic stabilities, and hold sizable spontaneous polarization, low ferroelectric switching barriers and high critical temperature. Their superior ferroelectricity is originated from d0-configuration transition metal ions generated by the hybridization of empty d orbitals of metal atoms and p orbitals of non-metal atoms. These critical insights pave a new avenue to fabricate 1D ferroelectrics toward the development of miniaturized and high-density electronic devices using building blocks as cluster with precise structures and functionalities.

Graphical abstract

Keywords

ferroelectricity / superatom / cluster-assembled materials / electronic properties / first-principles calculations

Cite this article

Download citation ▾
Yu Guo, Yang Zhao, Qiao Ling, Si Zhou, Jijun Zhao. Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters. Front. Phys., 2024, 19(6): 63210 https://doi.org/10.1007/s11467-024-1434-3

References

[1]
K.ZhangC. WangM.ZhangZ.BaiF.F. Xie Y.Z. TanY. GuoK.J. HuL.CaoS.Zhang X.TuD.Pan L.KangJ. ChenP.WuX.WangJ.Wang J.LiuY. SongG.WangF.SongW.Ji S.Y. XieS. F. ShiM.A. ReedB.Wang, A Gd@C82 single-molecule electret, Nat. Nanotechnol. 15(12), 1019 (2020)
[2]
J. Müller, T. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, and L. Frey, Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications, Appl. Phys. Lett. 99(11), 112901 (2011)
CrossRef ADS Google scholar
[3]
M.SiA.K. Saha S.GaoG. QiuJ.QinY.DuanJ.Jian C.NiuH. WangW.WuS.K. GuptaP.D. Ye, A ferroelectric semiconductor field-effect transistor, Nat. Electron. 2(12), 580 (2019)
[4]
P. Muralt, Ferroelectric thin films for micro-sensors and actuators: A review, J. Micromech. Microeng. 10(2), 136 (2000)
CrossRef ADS Google scholar
[5]
J. Li, S. Hou, Y. R. Yao, C. Zhang, Q. Wu, H. C. Wang, H. Zhang, X. Liu, C. Tang, M. Wei, W. Xu, Y. Wang, J. Zheng, Z. Pan, L. Kang, J. Liu, J. Shi, Y. Yang, C. J. Lambert, S. Y. Xie, and W. Hong, Room-temperature logic-in-memory operations in single-metallofullerene devices, Nat. Mater. 21(8), 917 (2022)
CrossRef ADS Google scholar
[6]
L. W. Martin and A. M. Rappe, Thin-film ferroelectric materials and their applications, Nat. Rev. Mater. 2(2), 16087 (2016)
CrossRef ADS Google scholar
[7]
M. Wu and P. Jena, The rise of two-dimensional van der Waals ferroelectrics, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8(5), e1365 (2018)
CrossRef ADS Google scholar
[8]
C. C. Chiang, V. Ostwal, P. Wu, C. S. Pang, F. Zhang, Z. Chen, and J. Appenzeller, Memory applications from 2D materials, Appl. Phys. Rev. 8(2), 021306 (2021)
CrossRef ADS Google scholar
[9]
L. Qi, S. Ruan, and Y. J. Zeng, Review on recent developments in 2D ferroelectrics: Theories and applications, Adv. Mater. 33(13), 2005098 (2021)
CrossRef ADS Google scholar
[10]
S. Horiuchi and Y. Tokura, Organic ferroelectrics, Nat. Mater. 7(5), 357 (2008)
CrossRef ADS Google scholar
[11]
Y. Tokura, S. Koshihara, N. Iwasawa, and G. Saito, Domain-wall dynamics in organic charge-transfer compounds with one-dimensional ferroelectricity, Phys. Rev. Lett. 63(21), 2405 (1989)
CrossRef ADS Google scholar
[12]
B. Gorshunov, V. Torgashev, E. Zhukova, V. Thomas, M. Belyanchikov, C. Kadlec, F. Kadlec, M. Savinov, T. Ostapchuk, J. Petzelt, J. Prokleška, P. V. Tomas, E. V. Pestrjakov, D. A. Fursenko, G. S. Shakurov, A. S. Prokhorov, V. S. Gorelik, L. S. Kadyrov, V. V. Uskov, R. K. Kremer, and M. Dressel, Incipient ferroelectricity of water molecules confined to nano-channels of beryl, Nat. Commun. 7(1), 12842 (2016)
CrossRef ADS Google scholar
[13]
B. A. Hernandez, K. S. Chang, E. R. Fisher, and P. K. Dorhout, Sol−gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes, Chem. Mater. 14(2), 480 (2002)
CrossRef ADS Google scholar
[14]
P. Jena and Q. Sun, Super atomic clusters: Design rules and potential for building blocks of materials, Chem. Rev. 118(11), 5755 (2018)
CrossRef ADS Google scholar
[15]
J. Zhao, Q. Du, S. Zhou, and V. Kumar, Endohedrally doped cage clusters, Chem. Rev. 120(17), 9021 (2020)
CrossRef ADS Google scholar
[16]
Z. Luo and A. W. Castleman, Special and general superatoms, Acc. Chem. Res. 47(10), 2931 (2014)
CrossRef ADS Google scholar
[17]
B. Choi, K. Lee, A. Voevodin, J. Wang, M. L. Steigerwald, P. Batail, X. Zhu, and X. Roy, Two-dimensional hierarchical semiconductor with addressable surfaces, J. Am. Chem. Soc. 140(30), 9369 (2018)
CrossRef ADS Google scholar
[18]
E. J. Telford, J. C. Russell, J. R. Swann, B. Fowler, X. Wang, K. Lee, A. Zangiabadi, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Batail, X. Zhu, J. A. Malen, C. R. Dean, and X. Roy, Doping-induced superconductivity in the van der Waals superatomic crystal Re6Se8Cl2, Nano Lett. 20(3), 1718 (2020)
CrossRef ADS arXiv Google scholar
[19]
X. Zhong, K. Lee, B. Choi, D. Meggiolaro, F. Liu, C. Nuckolls, A. Pasupathy, F. De Angelis, P. Batail, X. Roy, and X. Zhu, Superatomic two-dimensional semiconductor, Nano Lett. 18(2), 1483 (2018)
CrossRef ADS Google scholar
[20]
X. Roy, C. H. Lee, A. C. Crowther, C. L. Schenck, T. Besara, R. A. Lalancette, T. Siegrist, P. W. Stephens, L. E. Brus, P. Kim, M. L. Steigerwald, and C. Nuckolls, Nanoscale atoms in solid-state chemistry, Science 341(6142), 157 (2013)
CrossRef ADS Google scholar
[21]
Y. Guo, Q. Du, P. Wang, S. Zhou, J. Zhao, and Two-dimensional oxides assembled by M4 clusters (M= B,Mo, and Te), Phys. Rev. Res. 3(4), 043231 (2021)
CrossRef ADS Google scholar
[22]
Q. Du, Z. Wang, S. Zhou, J. Zhao, and V. Kumar, Searching for cluster Lego blocks for three-dimensional and two-dimensional assemblies, Phys. Rev. Mater. 5(6), 066001 (2021)
CrossRef ADS Google scholar
[23]
X. Chen, G. Fei, Y. Song, T. Ying, D. Huang, B. Pan, D. Yang, X. Yang, K. Chen, X. Zhan, J. Wang, Q. Zhang, Y. Li, L. Gu, H. Gou, X. Chen, S. Li, J. Cheng, X. Liu, H. Hosono, J. Guo, and X. Chen, Superatomic-charge-density-wave in cluster-assembled Au6Te12Se8 superconductors, J. Am. Chem. Soc. 144(45), 20915 (2022)
CrossRef ADS arXiv Google scholar
[24]
S. Xing, L. Wu, Z. Wang, X. Chen, H. Liu, S. Han, L. Lei, L. Zhou, Q. Zheng, L. Huang, X. Lin, S. Chen, L. Xie, X. Chen, H. J. Gao, Z. Cheng, J. Guo, S. Wang, and W. Ji, Interweaving polar charge orders in a layered metallic superatomic crystal, Phys. Rev. X 12(4), 041034 (2022)
CrossRef ADS Google scholar
[25]
Y. Zhao, Y. Guo, Y. Qi, X. Jiang, Y. Su, and J. Zhao, Coexistence of ferroelectricity and ferromagnetism in fullerene-based one-dimensional chains, Adv. Sci. (Weinh.) 10(21), 2301265 (2023)
CrossRef ADS Google scholar
[26]
J. R. Dilworth, Rhenium chemistry – then and now, Coord. Chem. Rev. 436, 213822 (2021)
CrossRef ADS Google scholar
[27]
K.DehnickeJ. Straehle, N-Halogenoimido complexes of transition metals, Chem. Rev. 93(3), 981 (1993)
[28]
W. Liese, K. Dehnicke, I. Walker, J. Strähle, and Darstellung und kristallstruktur von rhenium (VII)-nitridchlorid, ReNCl4, Z. Naturforsch. B. J. Chem. Sci. 34(5), 693 (1979)
CrossRef ADS Google scholar
[29]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[30]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[31]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[32]
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
CrossRef ADS Google scholar
[33]
S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73(2), 515 (2001)
CrossRef ADS Google scholar
[34]
R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys. 72(1), 650 (1980)
CrossRef ADS Google scholar
[35]
M. Dolg, U. Wedig, H. Stoll, and H. Preuss, Energy‐adjusted ab initio pseudopotentials for the first row transition elements, J. Chem. Phys. 86(2), 866 (1987)
CrossRef ADS Google scholar
[36]
M.FrischG. TrucksH.SchlegelG.ScuseriaM.Robb J.CheesemanG. ScalmaniV.BaroneG.PeterssonH.Nakatsuji, Gaussian 16, Revision A. 03, Gaussian, Inc. Wallingford CT 3 (2016)
[37]
T. Tsukamoto, N. Haruta, T. Kambe, A. Kuzume, and K. Yamamoto, Periodicity of molecular clusters based on symmetry-adapted orbital model, Nat. Commun. 10(1), 3727 (2019)
CrossRef ADS Google scholar
[38]
G.HenkelmanA. ArnaldssonH.Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36(3), 354 (2006)
[39]
M. Segall, R. Shah, C. J. Pickard, and M. Payne, Population analysis of plane-wave electronic structure calculations of bulk materials, Phys. Rev. B 54(23), 16317 (1996)
CrossRef ADS Google scholar
[40]
D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)
CrossRef ADS arXiv Google scholar
[41]
E. Bruyer, D. Di Sante, P. Barone, A. Stroppa, M. H. Whangbo, S. Picozzi, Possibility of combining ferroelectricity, Rashba-like spin splitting in monolayers of the 1T-type transition-metal dichalcogenides MX2 (M= Mo, and W; X= S, Te), Phys. Rev. B 94(19), 195402 (2016)
CrossRef ADS arXiv Google scholar
[42]
R. Fei, W. Kang, and L. Yang, Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides, Phys. Rev. Lett. 117(9), 097601 (2016)
CrossRef ADS arXiv Google scholar
[43]
W. Wan, C. Liu, W. Xiao, and Y. Yao, Promising ferroelectricity in 2D group IV tellurides: A first-principles study, Appl. Phys. Lett. 111(13), 132904 (2017)
CrossRef ADS arXiv Google scholar
[44]
R. E. Cohen, Origin of ferroelectricity in perovskite oxides, Nature 358(6382), 136 (1992)
CrossRef ADS Google scholar
[45]
K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, Enhancement of ferroelectricity in strained BaTiO3 thin films, Science 306(5698), 1005 (2004)
CrossRef ADS Google scholar
[46]
J. Rouquette, J. Haines, V. Bornand, M. Pintard, P. Papet, W. G. Marshall, and S. Hull, Pressure-induced rotation of spontaneous polarization in monoclinic and triclinic PbZr0.52Ti0.48O3, Phys. Rev. B 71(2), 024112 (2005)
CrossRef ADS Google scholar
[47]
N. Izyumskaya, Y. I. Alivov, S. J. Cho, H. Morkoç, H. Lee, and Y. S. Kang, Processing, structure, properties, and applications of PZT thin films, Crit. Rev. Solid State Mater. Sci. 32(3−4), 111 (2007)
CrossRef ADS Google scholar
[48]
I.Bersuker, The Jahn−Teller Effect and Vibronic Interactions in Modern Chemistry, Springer Science & Business Media: 2013
[49]
J. van den Brink and D. I. Khomskii, Multiferroicity due to charge ordering, J. Phys.: Condens. Matter 20(43), 434217 (2008)
CrossRef ADS arXiv Google scholar
[50]
Y. Bao and F. Zhang, Electronic engineering of ABO3 perovskite metal oxides based on d0 electronic-configuration metallic ions toward photocatalytic water splitting under visible light, Small Struct. 3(6), 2100226 (2022)
CrossRef ADS Google scholar
[51]
J. C. Wojdeł and J. Íñiguez, Testing simple predictors for the temperature of a structural phase transition, Phys. Rev. B 90(1), 014105 (2014)
CrossRef ADS Google scholar
[52]
G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
CrossRef ADS Google scholar
[53]
K. A. N. Duerloo, M. T. Ong, and E. J. Reed, Intrinsic piezoelectricity in two-dimensional materials, J. Phys. Chem. Lett. 3(19), 2871 (2012)
CrossRef ADS Google scholar
[54]
K. M. Ok, E. O. Chi, and P. S. Halasyamani, Bulk characterization methods for non-centrosymmetric materials: Second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity, Chem. Soc. Rev. 35(8), 710 (2006)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-024-1434-3 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-024-1434-3.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12004065, 91961204, 12222403, and 11974068), the Doctoral Start-up Foundation of Liaoning Province (No. 2022-BS-081), and the Fundamental Research Funds for the Central Univeristies (No. DUT24LAB114).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(2451 KB)

Accesses

Citations

Detail

Sections
Recommended

/