Optical properties of two-dimensional perovskites

Junchao Hu, Xinglin Wen, Dehui Li

PDF(16390 KB)
PDF(16390 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (3) : 33602. DOI: 10.1007/s11467-023-1256-8
TOPICAL REVIEW
TOPICAL REVIEW

Optical properties of two-dimensional perovskites

Author information +
History +

Abstract

The optical properties of two-dimensional (2D) perovskites recently receive numerous research focus thanks to the strong quantum and dielectric confinement effects. In addition to the strong excitonic effect at room temperature, 2D perovskites also have appealing features that their optical properties can be flexibly tuned by alternating organic or inorganic layers. Particularly, 2D chiral perovskites and 2D perovskites based heterostructures are emerging as new platforms to extend their functionalities. To optimize performance of 2D perovskites-based optoelectronic devices, it is critical to understand the fundamentals and explore the strategies to engineer their optical properties. This review begins with an introduction to the excitons and self-trapped excitons of 2D perovskites. Subsequently, inorganic/organic layer effects on optical properties and 2D perovskites based heterostructures are discussed. We also discussed the nonlinear optical properties of 2D perovskite. We are looking forward to that this review can stimulate more efforts to understand and optimize the optical properties of 2D perovskites.

Graphical abstract

Keywords

optical properties / two-dimensional perovskite / heterostructures / self-trapped excitons

Cite this article

Download citation ▾
Junchao Hu, Xinglin Wen, Dehui Li. Optical properties of two-dimensional perovskites. Front. Phys., 2023, 18(3): 33602 https://doi.org/10.1007/s11467-023-1256-8

References

[1]
A. Hubley, A. Bensalah‐Ledoux, B. Baguenard, S. Guy, B. Abécassis, B. Mahler. Chiral perovskite nanoplatelets exhibiting circularly polarized luminescence through ligand optimization. Adv. Opt. Mater., 2022, 10(19): 2200394
CrossRef ADS Google scholar
[2]
Y. T. Li, L. Han, H. Liu, K. Sun, D. Luo, X. L. Guo, D. L. Yu, T. L. Ren. Review on organic−inorganic two-dimensional perovskite-based optoelectronic devices. ACS Appl. Electron. Mater., 2022, 4(2): 547
CrossRef ADS Google scholar
[3]
S. Q. Luo, J. F. Wang, B. Yang, Y. B. Yuan. Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device. Front. Phys., 2019, 14(5): 53401
CrossRef ADS Google scholar
[4]
L. Mao, C. C. Stoumpos, M. G. Kanatzidis. Two-dimensional hybrid halide perovskites: Principles and promises. J. Am. Chem. Soc., 2019, 141(3): 1171
CrossRef ADS Google scholar
[5]
H. Wang, C. Fang, H. Luo, D. Li. Recent progress of the optoelectronic properties of 2D Ruddlesden−Popper perovskites. J. Semicond., 2019, 40(4): 041901
CrossRef ADS Google scholar
[6]
F. Wang, X. Zou, M. Xu, H. Wang, H. Wang, H. Guo, J. Guo, P. Wang, M. Peng, Z. Wang, Y. Wang, J. Miao, F. Chen, J. Wang, X. Chen, A. Pan, C. Shan, L. Liao, W. Hu. Recent progress on electrical and optical manipulations of perovskite photodetectors. Adv. Sci. (Weinh.), 2021, 8(14): 2100569
CrossRef ADS Google scholar
[7]
J. Xing, F. Yan, Y. Zhao, S. Chen, H. Yu, Q. Zhang, R. Zeng, H. V. Demir, X. Sun, A. Huan, Q. Xiong. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano, 2016, 10(7): 6623
CrossRef ADS Google scholar
[8]
Q. Zhang, Q. Shang, R. Su, T. T. H. Do, Q. Xiong. Halide perovskite semiconductor lasers: Materials, cavity design, and low threshold. Nano Lett., 2021, 21(5): 1903
CrossRef ADS Google scholar
[9]
S. T. Ha, X. Liu, Q. Zhang, D. Giovanni, T. C. Sum, Q. Xiong. Synthesis of organic−inorganic lead halide perovskite nanoplatelets: Towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater., 2014, 2(9): 838
CrossRef ADS Google scholar
[10]
Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen, H. X. Deng, X. Chu, X. Peng, Y. Yuan, X. Zhang, J. You. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377(6605): 531
CrossRef ADS Google scholar
[11]
V. V. M. Goldschmidt. Die gesetze der krystallochemie. Naturwissenschaften, 1926, 14(21): 477
CrossRef ADS Google scholar
[12]
L. Pedesseau, D. Sapori, B. Traore, R. Robles, H. H. Fang, M. A. Loi, H. Tsai, W. Nie, J. C. Blancon, A. Neukirch, S. Tretiak, A. D. Mohite, C. Katan, J. Even, M. Kepenekian. Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano, 2016, 10(11): 9776
CrossRef ADS Google scholar
[13]
C. Lan, Z. Zhou, R. Wei, J. C. Ho. Two-dimensional perovskite materials: From synthesis to energy-related applications. Mater. Today Energy, 2019, 11: 61
CrossRef ADS Google scholar
[14]
Y. Lekina, Z. X. Shen. Excitonic states and structural stability in two-dimensional hybrid organic−inorganic perovskites. J. Sci. Adv. Mater. Devices, 2019, 4(2): 189
CrossRef ADS Google scholar
[15]
W. Guo, Z. Yang, J. Dang, M. Wang. Progress and perspective in Dion−Jacobson phase 2D layered perovskite optoelectronic applications. Nano Energy, 2021, 86: 106129
CrossRef ADS Google scholar
[16]
J. Guo, T. Liu, M. Li, C. Liang, K. Wang, G. Hong, Y. Tang, G. Long, S. F. Yu, T. W. Lee, W. Huang, G. Xing. Ultrashort laser pulse doubling by metal-halide perovskite multiple quantum wells. Nat. Commun., 2020, 11(1): 3361
CrossRef ADS Google scholar
[17]
Y. I. Dolzhenko, T. Inabe, Y. Maruyama. In situ X-ray observation on the intercalation of weak interaction molecules into perovskite-type layered crystals (C9H19NH3)2PbI4 and (C10H21NH3)2CdCl4. Bull. Chem. Soc. Jpn., 1986, 59(2): 563
CrossRef ADS Google scholar
[18]
S. Chen, G. Shi. Two-dimensional materials for halide perovskite-based optoelectronic devices. Adv. Mater., 2017, 29(24): 1605448
CrossRef ADS Google scholar
[19]
J. Jagielski, S. Kumar, W. Y. Yu, C. J. Shih. Layer-controlled two-dimensional perovskites: Synthesis and optoelectronics. J. Mater. Chem. C, 2017, 5(23): 5610
CrossRef ADS Google scholar
[20]
Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng, Z. Liang. 2D Ruddlesden−Popper perovskites for optoelectronics. Adv. Mater., 2018, 30(2): 1703487
CrossRef ADS Google scholar
[21]
X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, Y. Zhang. Ruddlesden−Popper Perovskites, Synthesis and optical properties for optoelectronic applications. Adv. Sci. (Weinh.), 2019, 6(22): 1900941
CrossRef ADS Google scholar
[22]
G. Long, R. Sabatini, M. I. Saidaminov, G. Lakhwani, A. Rasmita, X. Liu, E. H. Sargent, W. Gao. Chiral-perovskite optoelectronics. Nat. Rev. Mater., 2020, 5(6): 423
CrossRef ADS Google scholar
[23]
H. Tsai, W. Nie, J. C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak, L. Pedesseau, J. Even, M. A. Alam, G. Gupta, J. Lou, P. M. Ajayan, M. J. Bedzyk, M. G. Kanatzidis, A. D. Mohite. High-efficiency two-dimensional Ruddlesden−Popper perovskite solar cells. Nature, 2016, 536(7616): 312
CrossRef ADS Google scholar
[24]
C. C. Stoumpos, C. M. M. Soe, H. Tsai, W. Nie, J. C. Blancon, D. H. Cao, F. Liu, B. Traoré, C. Katan, J. Even, A. D. Mohite, M. G. Kanatzidis. High members of the 2D Ruddlesden−Popper halide perovskites: Synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem, 2017, 2(3): 427
CrossRef ADS Google scholar
[25]
H. P. Wang, S. Li, X. Liu, Z. Shi, X. Fang, J. H. He. Low-dimensional metal halide perovskite photodetectors. Adv. Mater., 2021, 33(7): 2003309
CrossRef ADS Google scholar
[26]
Y. Zhang, Y. Ma, Y. Wang, X. Zhang, C. Zuo, L. Shen, L. Ding. Lead-free perovskite photodetectors: Progress, challenges, and opportunities. Adv. Mater., 2021, 33(26): 2006691
CrossRef ADS Google scholar
[27]
G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, W. Huang. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun., 2017, 8(1): 14558
CrossRef ADS Google scholar
[28]
N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R. H. Friend, J. Wang, W. Huang. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics, 2016, 10(11): 699
CrossRef ADS Google scholar
[29]
J. Zhou, Y. Chu, J. Huang. Photodetectors based on two-dimensional layer-structured hybrid lead iodide perovskite semiconductors. ACS Appl. Mater. Interfaces, 2016, 8(39): 25660
CrossRef ADS Google scholar
[30]
C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, M. G. Kanatzidis. Ruddlesden−Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater., 2016, 28(8): 2852
CrossRef ADS Google scholar
[31]
S. Yang, W. Niu, A. L. Wang, Z. Fan, B. Chen, C. Tan, Q. Lu, H. Zhang. Ultrathin two-dimensional organic−inorganic hybrid perovskite nanosheets with bright, tunable photoluminescence and high stability. Angew. Chem. Int. Ed., 2017, 56(15): 4252
CrossRef ADS Google scholar
[32]
W. Paritmongkol, N. S. Dahod, A. Stollmann, N. Mao, C. Settens, S. L. Zheng, W. A. Tisdale. Synthetic variation and structural trends in layered two-dimensional alkylammonium lead halide perovskites. Chem. Mater., 2019, 31(15): 5592
CrossRef ADS Google scholar
[33]
L. Ma, M. G. Ju, J. Dai, X. C. Zeng. Tin and germanium based two-dimensional Ruddlesden−Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. Nanoscale, 2018, 10(24): 11314
CrossRef ADS Google scholar
[34]
X. Li, J. M. Hoffman, M. G. Kanatzidis. The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev., 2021, 142: 2230
CrossRef ADS Google scholar
[35]
J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traore, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, A. D. Mohite. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun., 2018, 9(1): 2254
CrossRef ADS Google scholar
[36]
T. T. H. Do, A. Granados Del Aguila, D. Zhang, J. Xing, S. Liu, M. A. Prosnikov, W. Gao, K. Chang, P. C. M. Christianen, Q. Xiong. Bright exciton fine-structure in two-dimensional lead halide perovskites. Nano Lett., 2020, 20(7): 5141
CrossRef ADS Google scholar
[37]
H. Mathieu, P. Lefebvre, P. Christol. Simple analytical method for calculating exciton binding energies in semiconductor quantum wells. Phys. Rev. B, 1992, 46(7): 4092
CrossRef ADS Google scholar
[38]
T. Ishihara, J. Takahashi, T. Goto. Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. Phys. Rev. B, 1990, 42(17): 11099
CrossRef ADS Google scholar
[39]
X. Li, J. Hoffman, W. Ke, M. Chen, H. Tsai, W. Nie, A. D. Mohite, M. Kepenekian, C. Katan, J. Even, M. R. Wasielewski, C. C. Stoumpos, M. G. Kanatzidis. Two-dimensional halide perovskites incorporating straight chain symmetric diammonium ions, (NH3CmH2mNH3)(CH3NH3)n−1PbnI3n+1 (m = 4−9; n = 1−4). J. Am. Chem. Soc., 2018, 140(38): 12226
CrossRef ADS Google scholar
[40]
S. T. Ha, R. Su, J. Xing, Q. Zhang, Q. Xiong. Metal halide perovskite nanomaterials: Synthesis and applications. Chem. Sci. (Camb.), 2017, 8(4): 2522
CrossRef ADS Google scholar
[41]
Y. Gao, E. Shi, S. Deng, S. B. Shiring, J. M. Snaider, C. Liang, B. Yuan, R. Song, S. M. Janke, A. Liebman-Pelaez, P. Yoo, M. Zeller, B. W. Boudouris, P. Liao, C. Zhu, V. Blum, Y. Yu, B. M. Savoie, L. Huang, L. Dou. Molecular engineering of organic−inorganic hybrid perovskites quantum wells. Nat. Chem., 2019, 11(12): 1151
CrossRef ADS Google scholar
[42]
J. Li, H. Wang, D. Li. Self-trapped excitons in two-dimensional perovskites. Front Optoelectron., 2020, 13(3): 225
CrossRef ADS Google scholar
[43]
D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, A. Petrozza. Broadband emission in two-dimensional hybrid perovskites: The role of structural deformation. J. Am. Chem. Soc., 2017, 139(1): 39
CrossRef ADS Google scholar
[44]
D. Cortecchia, J. Yin, A. Petrozza, C. Soci. White light emission in low-dimensional perovskites. J. Mater. Chem. C, 2019, 7(17): 4956
CrossRef ADS Google scholar
[45]
X. Wu, M. T. Trinh, D. Niesner, H. Zhu, Z. Norman, J. S. Owen, O. Yaffe, B. J. Kudisch, X. Y. Zhu. Trap states in lead iodide perovskites. J. Am. Chem. Soc., 2015, 137(5): 2089
CrossRef ADS Google scholar
[46]
R. T. Williams, K. S. Song. The self-trapped exciton. J. Phys. Chem. Solids, 1990, 51(7): 679
CrossRef ADS Google scholar
[47]
L. Mao, Y. Wu, C. C. Stoumpos, M. R. Wasielewski, M. G. Kanatzidis. White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites. J. Am. Chem. Soc., 2017, 139(14): 5210
CrossRef ADS Google scholar
[48]
L. Mao, Y. Wu, C. C. Stoumpos, B. Traore, C. Katan, J. Even, M. R. Wasielewski, M. G. Kanatzidis. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10−xClx. J. Am. Chem. Soc., 2017, 139(34): 11956
CrossRef ADS Google scholar
[49]
Y. Fang, L. Zhang, L. Wu, J. Yan, Y. Lin, K. Wang, W. L. Mao, B. Zou. Pressure-induced emission (PIE) and phase transition of a two-dimensional halide double perovskite (BA)4AgBiBr8 (BA = CH3(CH2)3NH3+). Angew. Chem. Int. Ed., 2019, 58(43): 15249
CrossRef ADS Google scholar
[50]
M. Babaei, V. Ahmadi, G. Darvish. First-principles study of lead-free Ge-based 2D Ruddlesden−Popper hybrid perovskites for solar cell applications. Phys. Chem. Chem. Phys., 2022, 24(35): 21052
CrossRef ADS Google scholar
[51]
K. Tanaka, T. Kondo. Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals. Sci. Technol. Adv. Mater., 2004, 4(6): 599
CrossRef ADS Google scholar
[52]
P. Cheng, T. Wu, J. Liu, W. Q. Deng, K. Han. Lead-free, two-dimensional mixed germanium and tin perovskites. J. Phys. Chem. Lett., 2018, 9(10): 2518
CrossRef ADS Google scholar
[53]
F. Evers, A. Aharony, N. Bar-Gill, O. Entin-Wohlman, P. Hedeg, O. Hod, P. Jelinek, G. Kamieniarz, M. Lemeshko, K. Michaeli, V. Mujica, R. Naaman, Y. Paltiel, S. Refaely-Abramson, O. Tal, J. Thijssen, M. Thoss, J. M. V. Ruitenbeek, L. Venkataraman, D. H. Waldeck, B. Yan, L. Kronik. Theory of chirality induced spin selectivity: Progress and challenges. Adv. Mater., 2022, 34(13): 2106629
CrossRef ADS Google scholar
[54]
J. Yu, J. Kong, W. Hao, X. Guo, H. He, W. R. Leow, Z. Liu, P. Cai, G. Qian, S. Li, X. Chen, X. Chen. Broadband extrinsic self-trapped exciton emission in Sn-doped 2D lead-halide perovskites. Adv. Mater., 2019, 31: e1806385
[55]
J. L. Knutson, J. D. Martin, D. B. Mitzi. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg. Chem., 2005, 44(13): 4699
CrossRef ADS Google scholar
[56]
F. Zhang, D. H. Kim, H. Lu, J. S. Park, B. W. Larson, J. Hu, L. Gao, C. Xiao, O. G. Reid, X. Chen, Q. Zhao, P. F. Ndione, J. J. Berry, W. You, A. Walsh, M. C. Beard, K. Zhu. Enhanced charge transport in 2D perovskites via fluorination of organic cation. J. Am. Chem. Soc., 2019, 141(14): 5972
CrossRef ADS Google scholar
[57]
X. Hong, T. Ishihara, A. V. Nurmikko. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B, 1992, 45(12): 6961
CrossRef ADS Google scholar
[58]
L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan, J. Even, M. R. Wasielewski, C. C. Stoumpos, M. G. Kanatzidis. Hybrid Dion−Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc., 2018, 140(10): 3775
CrossRef ADS Google scholar
[59]
S. Silver, S. Xun, H. Li, J. L. Brédas, A. Kahn. Structural and electronic impact of an asymmetric organic ligand in diammonium lead iodide perovskites. Adv. Energy Mater., 2020, 10(14): 1903900
CrossRef ADS Google scholar
[60]
M. P. Hautzinger, D. Pan, A. K. Pigg, Y. Fu, D. J. Morrow, M. Leng, M. Y. Kuo, N. Spitha, D. P. II Lafayette, D. D. Kohler, J. C. Wright, S. Jin. Band edge tuning of two-dimensional Ruddlesden−Popper perovskites by a cation size revealed through nanoplates. ACS Energy Lett., 2020, 5(5): 1430
CrossRef ADS Google scholar
[61]
J. Yan, W. Fu, X. Zhang, J. Chen, W. Yang, W. Qiu, G. Wu, F. Liu, P. Heremans, H. Chen. Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 1.51 eV. Mater. Chem. Front., 2018, 2(1): 121
CrossRef ADS Google scholar
[62]
X. Wang, Y. Wang, W. Gao, L. Song, C. Ran, Y. Chen, W. Huang. Polarization-sensitive halide perovskites for polarized luminescence and detection: Recent advances and perspectives. Adv. Mater., 2021, 33(12): 2003615
CrossRef ADS Google scholar
[63]
C. Zhang, X. Wang, L. Qiu. Circularly polarized photodetectors based on chiral materials: A review. Front. Chem., 2021, 9: 711488
CrossRef ADS Google scholar
[64]
Y. Dang, X. Liu, B. Cao, X. Tao. Chiral halide perovskite crystals for optoelectronic applications. Matter, 2021, 4(3): 794
CrossRef ADS Google scholar
[65]
Y. Dong, Y. Zhang, X. Li, Y. Feng, H. Zhang, J. Xu. Chiral perovskites: Promising materials toward next-generation optoelectronics. Small, 2019, 15(39): 1902237
CrossRef ADS Google scholar
[66]
S. Ma, J. Ahn, J. Moon. Chiral perovskites for next-generation photonics: From chirality transfer to chiroptical activity. Adv. Mater., 2021, 33(47): 2005760
CrossRef ADS Google scholar
[67]
S. Alwan, Y. Dubi. Spinterface origin for the chirality-induced spin-selectivity effect. J. Am. Chem. Soc., 2021, 143(35): 14235
CrossRef ADS Google scholar
[68]
H. Lu, C. Xiao, R. Song, T. Li, A. E. Maughan, A. Levin, R. Brunecky, J. J. Berry, D. B. Mitzi, V. Blum, M. C. Beard. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J. Am. Chem. Soc., 2020, 142(30): 13030
CrossRef ADS Google scholar
[69]
T. Feng, Z. Wang, Z. Zhang, J. Xue, H. Lu. Spin selectivity in chiral metal-halide semiconductors. Nanoscale, 2021, 13(45): 18925
CrossRef ADS Google scholar
[70]
G. Long, C. Jiang, R. Sabatini, Z. Yang, M. Wei, L. N. Quan, Q. Liang, A. Rasmita, M. Askerka, G. Walters, X. Gong, J. Xing, X. Wen, R. Quintero-Bermudez, H. Yuan, G. Xing, X. R. Wang, D. Song, O. Voznyy, M. Zhang, S. Hoogland, W. Gao, Q. Xiong, E. H. Sargent. Spin control in reduced-dimensional chiral perovskites. Nat. Photonics, 2018, 12(9): 528
CrossRef ADS Google scholar
[71]
J. Ahn, E. Lee, J. Tan, W. Yang, B. Kim, J. Moon. A new class of chiral semiconductors: Chiral-organic-molecule-incorporating organic−inorganic hybrid perovskites. Mater. Horiz., 2017, 4(5): 851
CrossRef ADS Google scholar
[72]
L. Yan, M. K. Jana, P. C. Sercel, D. B. Mitzi, W. You. Alkyl−aryl cation mixing in chiral 2D perovskites. J. Am. Chem. Soc., 2021, 143(43): 18114
CrossRef ADS Google scholar
[73]
J. Ahn, S. Ma, J. Y. Kim, J. Kyhm, W. Yang, J. A. Lim, N. A. Kotov, J. Moon. Chiral 2D organic inorganic hybrid perovskite with circular dichroism tunable over wide wavelength range. J. Am. Chem. Soc., 2020, 142(9): 4206
CrossRef ADS Google scholar
[74]
D. G. Billing, A. Lemmerer. Bis[S-β-phenethylammonium] tribromoplumbate(II). Acta Crystallogr. Sect. E, 2003, 59(6): m381
CrossRef ADS Google scholar
[75]
D. G. Billing, A. Lemmerer. Synthesis and crystal structures of inorganic−organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm, 2006, 8(9): 686
CrossRef ADS Google scholar
[76]
L. Wang, Y. Xue, M. Cui, Y. Huang, H. Xu, C. Qin, J. Yang, H. Dai, M. Yuan. A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew. Chem. Int. Ed., 2020, 59(16): 6442
CrossRef ADS Google scholar
[77]
J. T. Lin, D. G. Chen, L. S. Yang, T. C. Lin, Y. H. Liu, Y. C. Chao, P. T. Chou, C. W. Chiu. Tuning the circular dichroism and circular polarized luminescence intensities of chiral 2D hybrid organic−inorganic perovskites through halogenation of the organic ions. Angew. Chem. Int. Ed., 2021, 60(39): 21434
CrossRef ADS Google scholar
[78]
Y. Dang, X. Liu, Y. Sun, J. Song, W. Hu, X. Tao. Bulk chiral halide perovskite single crystals for active circular dichroism and circularly polarized luminescence. J. Phys. Chem. Lett., 2020, 11(5): 1689
CrossRef ADS Google scholar
[79]
Z. Guo, J. Li, J. Liang, C. Wang, X. Zhu, T. He. Regulating optical activity and anisotropic second-harmonic generation in zero-dimensional hybrid copper halides. Nano Lett., 2022, 22(2): 846
CrossRef ADS Google scholar
[80]
L. Yao, Z. Zeng, C. Cai, P. Xu, H. Gu, L. Gao, J. Han, X. Zhang, X. Wang, X. Wang, A. Pan, J. Wang, W. Liang, S. Liu, C. Chen, J. Tang. Strong second- and third-harmonic generation in 1D chiral hybrid bismuth halides. J. Am. Chem. Soc., 2021, 143(39): 16095
CrossRef ADS Google scholar
[81]
T. H. Moon, S. J. Oh, K. M. Ok. [(R-C8H12N)4][Bi2Br10] and [(S-C8H12N)4][Bi2Br10]: Chiral hybrid bismuth bromides templated by chiral organic cations. ACS Omega, 2018, 3(12): 17895
CrossRef ADS Google scholar
[82]
F. Ge, B. H. Li, P. Cheng, G. Li, Z. Ren, J. Xu, X. H. Bu. Chiral hybrid copper(I) halides for high efficiency second harmonic generation with a broadband transparency window. Angew. Chem. Int. Ed., 2022, 61(10): e202115024
CrossRef ADS Google scholar
[83]
J. Ma, C. Fang, C. Chen, L. Jin, J. Wang, S. Wang, J. Tang, D. Li. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano, 2019, 13(3): 3659
CrossRef ADS Google scholar
[84]
J. Wang, C. Fang, J. Ma, S. Wang, L. Jin, W. Li, D. Li. Aqueous synthesis of low-dimensional lead halide perovskites for room-temperature circularly polarized light emission and detection. ACS Nano, 2019, 13(8): 9473
CrossRef ADS Google scholar
[85]
Y. H. Kim, Y. Zhai, H. Lu, X. Pan, C. Xiao, E. A. Gaulding, S. P. Harvey, J. J. Berry, Z. V. Vardeny, J. M. Luther, M. C. Beard. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science, 2021, 371(6534): 1129
CrossRef ADS Google scholar
[86]
A. Ishii, T. Miyasaka. Direct detection of circular polarized light in helical 1D perovskite-based photodiode. Sci. Adv., 2020, 6(46): eabd3274
CrossRef ADS Google scholar
[87]
C. Ye, J. Jiang, S. Zou, W. Mi, Y. Xiao. Core-shell three-dimensional perovskite nanocrystals with chiral-induced spin selectivity for room-temperature spin light-emitting diodes. J. Am. Chem. Soc., 2022, 144(22): 9707
CrossRef ADS Google scholar
[88]
J. Ma, H. Wang, D. Li. Recent progress of chiral perovskites: Materials, synthesis, and properties. Adv. Mater., 2021, 33(26): 2008785
CrossRef ADS Google scholar
[89]
T. He, J. Li, X. Li, C. Ren, Y. Luo, F. Zhao, R. Chen, X. Lin, J. Zhang. Spectroscopic studies of chiral perovskite nanocrystals. Appl. Phys. Lett., 2017, 111(15): 151102
CrossRef ADS Google scholar
[90]
Z. N. Georgieva, Z. Zhang, P. Zhang, B. P. Bloom, D. N. Beratan, D. H. Waldeck. Ligand coverage and exciton delocalization control chiral imprinting in perovskite nanoplatelets. J. Phys. Chem. C, 2022, 126(37): 15986
CrossRef ADS Google scholar
[91]
C. T. Wang, K. Chen, P. Xu, F. Yeung, H. S. Kwok, G. Li. Fully chiral light emission from CsPbX3 perovskite nanocrystals enabled by cholesteric superstructure stacks. Adv. Funct. Mater., 2019, 29(35): 1903155
CrossRef ADS Google scholar
[92]
M. K. Jana, R. Song, H. Liu, D. R. Khanal, S. M. Janke, R. Zhao, C. Liu, Z. Valy Vardeny, V. Blum, D. B. Mitzi. Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba−Dresselhaus spin−orbit coupling. Nat. Commun., 2020, 11(1): 4699
CrossRef ADS Google scholar
[93]
Y. H. Kim, R. Song, J. Hao, Y. Zhai, L. Yan, T. Moot, A. F. Palmstrom, R. Brunecky, W. You, J. J. Berry, J. L. Blackburn, M. C. Beard, V. Blum, J. M. Luther. The structural origin of chiroptical properties in perovskite nanocrystals with chiral organic ligands. Adv. Funct. Mater., 2022, 32(25): 2200454
CrossRef ADS Google scholar
[94]
Z. N. Georgieva, B. P. Bloom, S. Ghosh, D. H. Waldeck. Imprinting chirality onto the electronic states of colloidal perovskite nanoplatelets. Adv. Mater., 2018, 30(23): 1800097
CrossRef ADS Google scholar
[95]
J. Zhang, X. Zhu, M. Wang, B. Hu. Establishing charge-transfer excitons in 2D perovskite heterostructures. Nat. Commun., 2020, 11(1): 2618
CrossRef ADS Google scholar
[96]
J. Wang, J. Li, S. Lan, C. Fang, H. Shen, Q. Xiong, D. Li. Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors. ACS Nano, 2019, 13(5): 5473
CrossRef ADS Google scholar
[97]
Y. Fu, W. Zheng, X. Wang, M. P. Hautzinger, D. Pan, L. Dang, J. C. Wright, A. Pan, S. Jin. Multicolor heterostructures of two-dimensional layered halide perovskites that show interlayer energy transfer. J. Am. Chem. Soc., 2018, 140(46): 15675
CrossRef ADS Google scholar
[98]
E. Shi, B. Yuan, S. B. Shiring, Y. Gao, Y. Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, L. Dou. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature, 2020, 580(7805): 614
CrossRef ADS Google scholar
[99]
E. Akriti, E. Shi, S. B. Shiring, J. Yang, C. L. Atencio-Martinez, B. Yuan, X. Hu, Y. Gao, B. P. Finkenauer, A. J. Pistone, Y. Yu, P. Liao, B. M. Savoie, L. Dou. Layer-by-layer anionic diffusion in two-dimensional halide perovskite vertical heterostructures. Nat. Nanotechnol., 2021, 16(5): 584
CrossRef ADS Google scholar
[100]
Y. Chen, Z. Liu, J. Li, X. Cheng, J. Ma, H. Wang, D. Li. Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(8): 10258
CrossRef ADS Google scholar
[101]
Y. Chen, J. Ma, Z. Liu, J. Li, X. Duan, D. Li. Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(11): 15154
CrossRef ADS Google scholar
[102]
E. Shi, Y. Gao, B. P. Finkenauer, A. H. Akriti, A. H. Coffey, L. Dou. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev., 2018, 47(16): 6046
CrossRef ADS Google scholar
[103]
F. Fang, Y. Wan, H. Li, S. Fang, F. Huang, B. Zhou, K. Jiang, V. Tung, L. J. Li, Y. Shi. Two-dimensional Cs2AgBiBr6/WS2 heterostructure-based photodetector with boosted detectivity via interfacial engineering. ACS Nano, 2022, 16(3): 3985
CrossRef ADS Google scholar
[104]
Q. Zhang, E. Linardy, X. Wang, G. Eda. Excitonic energy transfer in heterostructures of quasi-2D perovskite and monolayer WS2. ACS Nano, 2020, 14(9): 11482
CrossRef ADS Google scholar
[105]
W. Yao, D. Yang, Y. Chen, J. Hu, J. Li, D. Li. Layer-number engineered momentum-indirect interlayer excitons with large spectral tunability. Nano Lett., 2022, 22(17): 7230
CrossRef ADS Google scholar
[106]
T. Ye, J. Li, D. Li. Charge-accumulation effect in transition metal dichalcogenide heterobilayers. Small, 2019, 15(42): 1902424
CrossRef ADS Google scholar
[107]
A. F. Rigosi, H. M. Hill, Y. Li, A. Chernikov, T. F. Heinz. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett., 2015, 15(8): 5033
CrossRef ADS Google scholar
[108]
H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, A. Javey. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA, 2014, 111(17): 6198
CrossRef ADS Google scholar
[109]
P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, X. Xu. Observation of long-lived interlayer excitons in monolayer MoSe2−WSe2 heterostructures. Nat. Commun., 2015, 6(1): 6242
CrossRef ADS Google scholar
[110]
P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J. U. Lee, K. Y. Ma, A. R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, H. S. Shin. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano, 2017, 11(4): 4041
CrossRef ADS Google scholar
[111]
A. Elbanna, K. Chaykun, Y. Lekina, Y. Liu, B. Febriansyah, S. Li, J. Pan, Z. X. Shen, J. Teng. Perovskite-transition metal dichalcogenides heterostructures: Recent advances and future perspectives. Opto-Electron. Sci., 2022, 1(8): 220006
CrossRef ADS Google scholar
[112]
Q. Wei, X. Wen, J. Hu, Y. Chen, Z. Liu, T. Lin, D. Li. Site-controlled interlayer coupling in WSe2/2D perovskite heterostructure. Sci. China Mater., 2022, 65(5): 1337
CrossRef ADS Google scholar
[113]
G. Zhan, J. Zhang, L. Zhang, Z. Ou, H. Yang, Y. Qian, X. Zhang, Z. Xing, L. Zhang, C. Li, J. Zhong, J. Yuan, Y. Cao, D. Zhou, X. Chen, H. Ma, X. Song, C. Zha, X. Huang, J. Wang, T. Wang, W. Huang, L. Wang. Stimulating and manipulating robust circularly polarized photoluminescence in achiral hybrid perovskites. Nano Lett., 2022, 22(10): 3961
CrossRef ADS Google scholar
[114]
J. Xu, X. Li, J. Xiong, C. Yuan, S. Semin, T. Rasing, X. H. Bu. Halide perovskites for nonlinear optics. Adv. Mater., 2020, 32(3): 1806736
CrossRef ADS Google scholar
[115]
G. Wang, S. Mei, J. Liao, W. Wang, Y. Tang, Q. Zhang, Z. Tang, B. Wu, G. Xing. Advances of nonlinear photonics in low-dimensional halide perovskites. Small, 2021, 17(43): 2100809
CrossRef ADS Google scholar
[116]
X. Wen, Z. Gong, D. Li. Nonlinear optics of two‐dimensional transition metal dichalcogenides. InfoMat, 2019, 1(3): 317
CrossRef ADS Google scholar
[117]
X. Han, Y. Zheng, S. Chai, S. Chen, J. Xu. 2D organic−inorganic hybrid perovskite materials for nonlinear optics. Nanophotonics, 2020, 9(7): 1787
CrossRef ADS Google scholar
[118]
Y. Zhou, Y. Huang, X. Xu, Z. Fan, J. B. Khurgin, Q. Xiong. Nonlinear optical properties of halide perovskites and their applications. Appl. Phys. Rev., 2020, 7(4): 041313
CrossRef ADS Google scholar
[119]
T. T. H. Do, A. G. Del Aguila, J. Xing, S. Liu, Q. Xiong. Direct and indirect exciton transitions in two-dimensional lead halide perovskite semiconductors. J. Chem. Phys., 2020, 153(6): 064705
CrossRef ADS Google scholar
[120]
C. Yuan, X. Li, S. Semin, Y. Feng, T. Rasing, J. Xu. Chiral lead halide perovskite nanowires for second-order nonlinear optics. Nano Lett., 2018, 18(9): 5411
CrossRef ADS Google scholar
[121]
J. Zhao, Y. Zhao, Y. Guo, X. Zhan, J. Feng, Y. Geng, M. Yuan, X. Fan, H. Gao, L. Jiang, Y. Yan, Y. Wu. Layered metal-halide perovskite single-crystalline microwire arrays for anisotropic nonlinear optics. Adv. Funct. Mater., 2021, 31(48): 2105855
CrossRef ADS Google scholar
[122]
Z. Yu, S. Cao, Y. Zhao, Y. Guo, M. Dong, Y. Fu, J. Zhao, J. Yang, L. Jiang, Y. Wu. Chiral lead-free double perovskite single-crystalline microwire arrays for anisotropic second-harmonic generation. ACS Appl. Mater. Interfaces, 2022, 14(34): 39451
CrossRef ADS Google scholar
[123]
W. J. Wei, X. X. Jiang, L. Y. Dong, W. W. Liu, X. B. Han, Y. Qin, K. Li, W. Li, Z. S. Lin, X. H. Bu, P. X. Lu. Regulating second-harmonic generation by van der Waals interactions in two-dimensional lead halide perovskite nanosheets. J. Am. Chem. Soc., 2019, 141(23): 9134
CrossRef ADS Google scholar
[124]
I. Abdelwahab, G. Grinblat, K. Leng, Y. Li, X. Chi, A. Rusydi, S. A. Maier, K. P. Loh. Highly enhanced third-harmonic generation in 2D perovskites at excitonic resonances. ACS Nano, 2018, 12(1): 644
CrossRef ADS Google scholar
[125]
F. O. Saouma, C. C. Stoumpos, J. Wong, M. G. Kanatzidis, J. I. Jang. Selective enhancement of optical nonlinearity in two-dimensional organic−inorganic lead iodide perovskites. Nat. Commun., 2017, 8(1): 742
CrossRef ADS Google scholar
[126]
Z. Chen, Q. Zhang, M. Zhu, H. Chen, X. Wang, S. Xiao, K. P. Loh, G. Eda, J. Meng, J. He. In-plane anisotropic nonlinear optical properties of two-dimensional organic−inorganic hybrid perovskite. J. Phys. Chem. Lett., 2021, 12(29): 7010
CrossRef ADS Google scholar
[127]
W. Liu, J. Xing, J. Zhao, X. Wen, K. Wang, P. Lu, Q. Xiong. Giant two-photon absorption and its saturation in 2D organic−inorganic perovskite. Adv. Opt. Mater., 2017, 5(7): 1601045
CrossRef ADS Google scholar
[128]
L. Li, X. Shang, S. Wang, N. Dong, C. Ji, X. Chen, S. Zhao, J. Wang, Z. Sun, M. Hong, J. Luo. Bilayered hybrid perovskite ferroelectric with giant two-photon absorption. J. Am. Chem. Soc., 2018, 140(22): 6806
CrossRef ADS Google scholar
[129]
F. Zhou, I. Abdelwahab, K. Leng, K. P. Loh, W. Ji. 2D perovskites with giant excitonic optical nonlinearities for high-performance sub-bandgap photodetection. Adv. Mater., 2019, 31(48): 1904155
CrossRef ADS Google scholar
[130]
J. Wang, Y. Mi, X. Gao, J. Li, J. Li, S. Lan, C. Fang, H. Shen, X. Wen, R. Chen, X. Liu, T. He, D. Li. Giant nonlinear optical response in 2D perovskite heterostructures. Adv. Opt. Mater., 2019, 7(15): 1900398
CrossRef ADS Google scholar
[131]
W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, P. Lu. Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure. Adv. Funct. Mater., 2018, 28(26): 1707550
CrossRef ADS Google scholar
[132]
C. Q. Xu, T. Kondo, H. Sakakura, K. Kumatat, Y. Takahashit, R. Ito. Optical third-harmonic generation in layered perovskite-type material (C10H21NH3)2-PbI4. Solid State Commun., 1991, 79(3): 245
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFB2803900), the National Natural Science Foundation of China (Grant Nos. 62074064 and 62005091), and the Innovation Fund of WNLO.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(16390 KB)

Accesses

Citations

Detail

Sections
Recommended

/