The rise of two-dimensional tellurium for next-generation electronics and optoelectronics

Tao Zhu, Yao Zhang, Xin Wei, Man Jiang, Hua Xu

PDF(7487 KB)
PDF(7487 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (3) : 33601. DOI: 10.1007/s11467-022-1231-9
TOPICAL REVIEW
TOPICAL REVIEW

The rise of two-dimensional tellurium for next-generation electronics and optoelectronics

Author information +
History +

Abstract

Single-element two-dimensional (2D) tellurium (Te) which possesses an unusual quasi-one-dimensional atomic chain structure is a new member in 2D materials family. 2D Te possesses high carrier mobility, wide tunable bandgap, strong light-matter interaction, better environmental stability, and strong anisotropy, making Te exhibit tremendous application potential in next-generation electronic and optoelectronic devices. However, as an emerging 2D material, the research on fundamental property and device application of Te is still in its infancy. Hence, this review summarizes the most recent research progresses about the new star 2D Te and discusses its future development direction. Firstly, the structural features, basic physical properties, and various preparation methods of 2D Te are systemically introduced. Then, we emphatically summarize the booming development of 2D Te-based electronic and optoelectronic devices including field effect transistors, photodetectors and van der Waals heterostructure photodiodes. Finally, the future challenges, opportunities, and development directions of 2D Te-based electronic and optoelectronic devices are prospected.

Graphical abstract

Keywords

two-dimensional materials / tellurium / van der Waals heterostructure / electronic / optoelectronic

Cite this article

Download citation ▾
Tao Zhu, Yao Zhang, Xin Wei, Man Jiang, Hua Xu. The rise of two-dimensional tellurium for next-generation electronics and optoelectronics. Front. Phys., 2023, 18(3): 33601 https://doi.org/10.1007/s11467-022-1231-9

References

[1]
K. S. Novoselov , A. K. Geim , S. V. Morozov , D. Jiang , Y. Zhang , S. V. Dubonos , I. V. Grigorieva , A. A. Firsov . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
CrossRef ADS Google scholar
[2]
C. Tan , X. Cao , X. J. Wu , Q. He , J. Yang , X. Zhang , J. Chen , W. Zhao , S. Han , G. H. Nam , M. Sindoro , H. Zhang . Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev., 2017, 117(9): 6225
CrossRef ADS Google scholar
[3]
H. Zhang . Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451
CrossRef ADS Google scholar
[4]
D. Akinwande , C. Huyghebaert , C. H. Wang , M. I. Serna , S. Goossens , L. J. Li , H. S. P. Wong , F. H. L. Koppens . Graphene and two-dimensional materials for silicon technology. Nature, 2019, 573(7775): 507
CrossRef ADS Google scholar
[5]
A. J. Mannix , X. F. Zhou , B. Kiraly , J. D. Wood , D. Alducin , B. D. Myers , X. Liu , B. L. Fisher , U. Santiago , J. R. Guest , M. J. Yacaman , A. Ponce , A. R. Oganov , M. C. Hersam , N. P. Guisinger . Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science, 2015, 350(6267): 1513
CrossRef ADS Google scholar
[6]
W. Zhai , T. Xiong , Z. K. He , S. Lu , Z. Lai , Q. He , C. Tan , H. Zhang . Nanodots derived from layered materials: Synthesis and applications. Adv. Mater., 2021, 33(46): 2006661
CrossRef ADS Google scholar
[7]
Y. Xiao , M. Zhou , J. Liu , J. Xu , L. Fu . Phase engineering of two-dimensional transition metal dichalcogenides. Sci. China Mater., 2019, 62(6): 759
CrossRef ADS Google scholar
[8]
T. Chowdhury , E. C. Sadler , T. J. Kempa . Progress and prospects in transition-metal dichalcogenide research beyond 2D. Chem. Rev., 2020, 120(22): 12563
CrossRef ADS Google scholar
[9]
S. Roy , X. Zhang , A. B. Puthirath , A. Meiyazhagan , S. Bhattacharyya . . Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater., 2021, 33(44): 2101589
CrossRef ADS Google scholar
[10]
Y. Cao , V. Fatemi , S. Fang , K. Watanabe , T. Taniguchi , E. Kaxiras , P. Jarillo-Herrero . Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
CrossRef ADS Google scholar
[11]
H. Zhao , C. W. Zhang , W. X. Ji , R. W. Zhang , S. S. Li , S. S. Yan , B. M. Zhang , P. Li , P. J. Wang . Unexpected giant-gap quantum spin hall insulator in chemically decorated plumbene monolayer. Sci. Rep., 2016, 6(1): 20152
CrossRef ADS Google scholar
[12]
S. B. Lu , L. L. Miao , Z. N. Guo , X. Qi , C. J. Zhao , H. Zhang , S. C. Wen , D. Y. Tang , D. Y. Fan . Broadband nonlinear optical response in multi-layer black phosphorus: An emerging infrared and mid-infrared optical material. Opt. Express, 2015, 23(9): 11183
CrossRef ADS Google scholar
[13]
K. S. Novoselov , D. V. Andreeva , W. Ren , G. Shan . Graphene and other two-dimensional materials. Front. Phys., 2019, 14(1): 13301
CrossRef ADS Google scholar
[14]
M. Chhowalla , D. Jena , H. Zhang . Two-dimensional semiconductors for transistors. Nat. Rev. Mater., 2016, 1(11): 16052
CrossRef ADS Google scholar
[15]
Y. Liu , X. Duan , H. J. Shin , S. Park , Y. Huang , X. Duan . Promises and prospects of two-dimensional transistors. Nature, 2021, 591(7848): 43
CrossRef ADS Google scholar
[16]
C. Hu . Finfet and UTB - how to make very short channel MOSFETs. ECS Trans., 2013, 50(9): 17
CrossRef ADS Google scholar
[17]
C. Chen , X. Chen , C. Wu , X. Wang , Y. Ping , X. Wei , X. Zhou , J. Lu , L. Zhu , J. Zhou , T. Zhai , J. Han , H. Xu . Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv. Mater., 2022, 34(2): 2107512
CrossRef ADS Google scholar
[18]
C. Zhao , C. Tan , D. H. Lien , X. Song , M. Amani , M. Hettick , H. Y. Y. Nyein , Z. Yuan , L. Li , M. C. Scott , A. Javey . Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat. Nanotechnol., 2020, 15(1): 53
CrossRef ADS Google scholar
[19]
V. B. Koman , P. Liu , D. Kozawa , A. T. Liu , A. L. Cottrill , Y. Son , J. A. Lebron , M. S. Strano . Colloidal nanoelectronic state machines based on 2D materials for aerosolizable electronics. Nat. Nanotechnol., 2018, 13(9): 819
CrossRef ADS Google scholar
[20]
K. F. Mak , J. Shan . Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 2016, 10(4): 216
CrossRef ADS Google scholar
[21]
Z.ChengR.CaoK.WeiY.YaoX.LiuJ.KangJ.DongZ.ShiH.ZhangX.Zhang, 2D materials enabled next‐generation integrated optoelectronics: From fabrication to applications, Adv. Sci. (Weinh.) 8(11), 2003834 (2021)
[22]
C. Tan , Z. Luo , A. Chaturvedi , Y. Cai , Y. Du , Y. Gong , Y. Huang , Z. Lai , X. Zhang , L. Zheng , X. Qi , M. H. Goh , J. Wang , S. Han , X. J. Wu , L. Gu , C. Kloc , H. Zhang . Preparation of high-percentage 1T′-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv. Mater., 2018, 30(9): 1705509
CrossRef ADS Google scholar
[23]
X. Chia , M. Pumera . Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal., 2018, 1(12): 909
CrossRef ADS Google scholar
[24]
E. Pomerantseva , Y. Gogotsi . Two-dimensional heterostructures for energy storage. Nat. Energy, 2017, 2(7): 17089
CrossRef ADS Google scholar
[25]
S. Das , D. Pandey , J. Thomas , T. Roy . The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater., 2019, 31(1): 1802722
CrossRef ADS Google scholar
[26]
K. Kostarelos . Translating graphene and 2D materials into medicine. Nat. Rev. Mater., 2016, 1(11): 16084
CrossRef ADS Google scholar
[27]
L.ChengX.WangF.GongT.LiuZ.Liu, 2D Nanomaterials for cancer theranostic applications, Adv. Mater. 32(13), 1902333 (2020)
[28]
H. Jiang , L. Zheng , Z. Liu , X. Wang . Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat, 2020, 2(6): 1077
CrossRef ADS Google scholar
[29]
Z. Wang , B. Mi . Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol., 2017, 51(15): 8229
CrossRef ADS Google scholar
[30]
F. H. L. Koppens , T. Mueller , P. Avouris , A. C. Ferrari , M. S. Vitiello , M. Polini . Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 2014, 9(10): 780
CrossRef ADS Google scholar
[31]
Q. X. Qiu , Z. M. Huang . Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater., 2021, 33(15): 2008126
CrossRef ADS Google scholar
[32]
F. W. Zhuge , Z. Zheng , P. Luo , L. Lv , Y. Huang , H. Q. Li , T. Y. Zhai . Nanostructured materials and architectures for advanced infrared photodetection. Adv. Mater. Technol., 2017, 2(8): 1700005
CrossRef ADS Google scholar
[33]
X. H. Li , Y. X. Guo , Y. J. Ren , J. J. Peng , J. S. Liu , C. Wang , H. Zhang . Narrow-bandgap materials for optoelectronics applications. Front. Phys., 2022, 17(1): 13304
CrossRef ADS Google scholar
[34]
M. Cheng , J. B. Yang , X. H. Li , H. Li , R. F. Du , J. P. Shi , J. He . Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
CrossRef ADS Google scholar
[35]
X.LiC.ChenY.YangZ.LeiH.Xu, 2D Re-based transition metal chalcogenides: Progress, challenges, and opportunities, Adv. Sci. (Weinh.) 7(23), 2002320 (2020)
[36]
Y. Liu , X. D. Duan , Y. Huang , X. F. Duan . Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev., 2018, 47(16): 6388
CrossRef ADS Google scholar
[37]
R. Cao , H. D. Wang , Z. N. Guo , D. K. Sang , L. Y. Zhang , Q. L. Xiao , Y. P. Zhang , D. Y. Fan , J. Q. Li , H. Zhang . Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity. Adv. Opt. Mater., 2019, 7(12): 1900020
CrossRef ADS Google scholar
[38]
M. J. Dai , H. Y. Chen , F. K. Wang , M. S. Long , H. M. Shang , Y. X. Hu , W. Li , C. Y. Ge , J. Zhang , T. Y. Zhai , Y. Q. Fu , P. A. Hu . Ultrafast and sensitive self-powered photodetector featuring self-limited depletion region and fully depleted channel with van der Waals contacts. ACS Nano, 2020, 14(7): 9098
CrossRef ADS Google scholar
[39]
Y. C. Kim , T. W. Bae , H. J. Kwon , B. I. Kim , S. H. Ahn . Infrared (IR) image synthesis method of IR real background and modeled IR target. Infrared Phys. Technol., 2014, 63: 54
CrossRef ADS Google scholar
[40]
L. J. Pi , P. F. Wang , S. J. Liang , P. Luo , H. Y. Wang , D. Y. Li , Z. X. Li , P. Chen , X. Zhou , F. Miao , T. Y. Zhai . Broadband convolutional processing using band-alignment-tunable heterostructures. Nat. Electron., 2022, 5(4): 248
CrossRef ADS Google scholar
[41]
C. Tan , S. Yin , J. Chen , Y. Lu , W. Wei , H. Du , K. Liu , F. Wang , T. Zhai , L. Li . Broken-gap PtS2/WSe2 van der Waals heterojunction with ultrahigh reverse rectification and fast photoresponse. ACS Nano, 2021, 15(5): 8328
CrossRef ADS Google scholar
[42]
J. Zheng , Z. Yang , C. Si , Z. Liang , X. Chen , R. Cao , Z. Guo , K. Wang , Y. Zhang , J. Ji , M. Zhang , D. Fan , H. Zhang . Black phosphorus based all-optical-signal-processing: Toward high performances and enhanced stability. ACS Photonics, 2017, 4(6): 1466
CrossRef ADS Google scholar
[43]
W.YangK.XinJ.YangQ.XuC.ShanZ.Wei, 2D ultrawide bandgap semiconductors: Odyssey and challenges, Small Methods 6(4), 2101348 (2022)
[44]
J. J. Zha , M. C. Luo , M. Ye , T. Ahmed , X. C. Yu , D. H. Lien , Q. Y. He , D. Y. Lei , J. C. Ho , J. Bullock , K. B. Crozier , C. L. Tan . Infrared photodetectors based on 2D materials and nanophotonics. Adv. Funct. Mater., 2022, 32(15): 2111970
CrossRef ADS Google scholar
[45]
X. Guan , X. Yu , D. Periyanagounder , M. R. Benzigar , J. K. Huang , C. H. Lin , J. Kim , S. Singh , L. Hu , G. Liu , D. Li , J. H. He , F. Yan , Q. J. Wang , T. Wu . Recent progress in short- to long-wave infrared photodetection using 2D materials and heterostructures. Adv. Opt. Mater., 2021, 9(4): 2001708
CrossRef ADS Google scholar
[46]
Y. Yang , K. X. Zhang , L. B. Zhang , G. Hong , C. Chen , H. M. Jing , J. B. Lu , P. Wang , X. S. Chen , L. Wang , H. Xu . Controllable growth of type-II Dirac semimetal PtTe2 atomic layer on Au substrate for sensitive room temperature terahertz photodetection. InfoMat, 2021, 3(6): 705
CrossRef ADS Google scholar
[47]
M. Dai , C. Wang , M. Ye , S. Zhu , S. Han , F. Sun , W. Chen , Y. Jin , Y. Chua , Q. J. Wang . High-performance, polarization-sensitive, long-wave infrared photodetection via photothermoelectric effect with asymmetric van der Waals contacts. ACS Nano, 2022, 16(1): 295
CrossRef ADS Google scholar
[48]
E. J. Reed . Two-dimensional tellurium. Nature, 2017, 552(7683): 40
CrossRef ADS Google scholar
[49]
S. H. Yang . Chirality tweaks spins in tellurium. Nat. Mater., 2022, 21(5): 494
CrossRef ADS Google scholar
[50]
Y. Wang , G. Qiu , R. Wang , S. Huang , Q. Wang , Y. Liu , Y. Du , W. A. III Goddard , M. J. Kim , X. Xu , P. D. Ye , W. Wu . Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron., 2018, 1(4): 228
CrossRef ADS Google scholar
[51]
C. F. Shen , Y. H. Liu , J. B. Wu , C. Xu , D. Z. Cui , Z. Li , Q. Z. Liu , Y. R. Li , Y. X. Wang , X. Cao , H. Kumazoe , F. Shimojo , A. Krishnamoorthy , R. K. Kalia , A. Nakano , P. D. Vashishta , M. R. Amer , A. N. Abbas , H. Wang , W. Z. Wu , C. W. Zhou . Tellurene photodetector with high gain and wide bandwidth. ACS Nano, 2020, 14(1): 303
CrossRef ADS Google scholar
[52]
D. A. Nguyen , Y. Jo , T. U. Tran , M. S. Jeong , H. Kim , H. Im . Electrically and optically controllable p–n junction memtransistor based on an Al2O3 encapsulated 2D Te/ReS2 van der Waals heterostructure. Small Methods, 2021, 5(12): 2101303
CrossRef ADS Google scholar
[53]
B.Z. YanG.R. LiB.N. ShiJ.T. LiuH.K. NieK.J. YangB.T. ZhangJ.He, 2D tellurene/black phosphorus heterojunctions based broadband nonlinear saturable absorber, Nanophotonics 9(8), 2593 (2020)
[54]
B. Zheng , Z. Wu , F. Guo , R. Ding , J. Mao , M. Xie , S. P. Lau , J. Hao . Large-area tellurium/germanium heterojunction grown by molecular beam epitaxy for high-performance self-powered photodetector. Adv. Opt. Mater., 2021, 9(20): 2101052
CrossRef ADS Google scholar
[55]
W. Huang , Y. Zhang , Q. You , P. Huang , Y. Wang , Z. N. Huang , Y. Ge , L. Wu , Z. Dong , X. Dai , Y. Xiang , J. Li , X. Zhang , H. Zhang . Enhanced photodetection properties of tellurium@selenium roll-to-roll nanotube heterojunctions. Small, 2019, 15(23): 1900902
CrossRef ADS Google scholar
[56]
C. Wang , P. Z. Wang , S. Y. Chen , W. Wen , W. Q. Xiong , Z. Z. Liu , Y. F. Liu , J. Q. He , Y. S. Wang . Anisotropic properties of tellurium nanoflakes probed by polarized Raman and transient absorption microscopy: Implications for polarization-sensitive applications. ACS Appl. Nano Mater., 2022, 5(2): 1767
CrossRef ADS Google scholar
[57]
J. W. Liu , J. H. Zhu , C. L. Zhang , H. W. Liang , S. H. Yu . Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc., 2010, 132(26): 8945
CrossRef ADS Google scholar
[58]
H. Peng , N. Kioussis , G. J. Snyder . Elemental tellurium as a chiral p-type thermoelectric material. Phys. Rev. B, 2014, 89(19): 195206
CrossRef ADS Google scholar
[59]
Y. Wang , Y. Wang , Y. Dong , L. Zhou , H. Wei , M. Long , S. Xiao , J. He . The nonlinear optical transition bleaching in tellurene. Nanoscale, 2021, 13(37): 15882
CrossRef ADS Google scholar
[60]
J. P. Hermann , G. Quentin , J. M. Thuillier . Determination of the d14 piezoelectric coefficient of tellurium. Solid State Commun., 1969, 7(1): 161
CrossRef ADS Google scholar
[61]
C. Lin , W. Cheng , G. Chai , H. Zhang . Thermoelectric properties of two-dimensional selenene and tellurene from group-VI elements. Phys. Chem. Chem. Phys., 2018, 20(37): 24250
CrossRef ADS Google scholar
[62]
W. Zhang , Q. Wu , O. V. Yazyev , H. Weng , Z. Guo , W. D. Cheng , G. L. Chai . Topological phase transitions driven by strain in monolayer tellurium. Phys. Rev. B, 2018, 98(11): 115411
CrossRef ADS Google scholar
[63]
L. Tong , X. Y. Huang , P. Wang , L. Ye , M. Peng , L. C. An , Q. D. Sun , Y. Zhang , G. M. Yang , Z. Li , F. Zhong , F. Wang , Y. X. Wang , M. Motlag , W. Z. Wu , G. J. Cheng , W. D. Hu . Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun., 2020, 11(1): 2308
CrossRef ADS Google scholar
[64]
G. Jnawali , Y. Xiang , S. M. Linser , I. A. Shojaei , R. Wang , G. Qiu , C. Lian , B. M. Wong , W. Wu , P. D. Ye , Y. Leng , H. E. Jackson , L. M. Smith . Ultrafast photoinduced band splitting and carrier dynamics in chiral tellurium nanosheets. Nat. Commun., 2020, 11(1): 3991
CrossRef ADS Google scholar
[65]
W. Wu , G. Qiu , Y. Wang , R. Wang , P. Ye . Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev., 2018, 47(19): 7203
CrossRef ADS Google scholar
[66]
Z. Shi , R. Cao , K. Khan , A. K. Tareen , X. Liu , W. Liang , Y. Zhang , C. Ma , Z. Guo , X. Luo , H. Zhang . Two-dimensional tellurium: Progress, challenges, and prospects. Nano-Micro Lett., 2020, 12(1): 99
CrossRef ADS Google scholar
[67]
Z. Yan , H. Yang , Z. Yang , C. Ji , G. Zhang , Y. Tu , G. Du , S. Cai , S. Lin . Emerging two-dimensional tellurene and tellurides for broadband photodetectors. Small, 2022, 18(20): 2200016
CrossRef ADS Google scholar
[68]
G. Qiu , A. Charnas , C. Niu , Y. X. Wang , W. Z. Wu , P. D. Ye . The resurrection of tellurium as an elemental two-dimensional semiconductor. npj 2D Mater. Appl., 2022, 6(1): 17
CrossRef ADS Google scholar
[69]
Z. Zhu , X. Cai , S. Yi , J. Chen , Y. Dai , C. Niu , Z. Guo , M. Xie , F. Liu , J. H. Cho , Y. Jia , Z. Zhang . Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study. Phys. Rev. Lett., 2017, 119(10): 106101
CrossRef ADS Google scholar
[70]
B. Wu , X. Liu , J. Yin , H. Lee . Bulk β-Te to few layered β-tellurenes: Indirect to direct band-gap transitions showing semiconducting property. Mater. Res. Express, 2017, 4(9): 095902
CrossRef ADS Google scholar
[71]
M. Amani , C. L. Tan , G. Zhang , C. S. Zhao , J. Bullock , X. H. Song , H. Kim , V. R. Shrestha , Y. Gao , K. B. Crozier , M. Scott , A. Javey . Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano, 2018, 12(7): 7253
CrossRef ADS Google scholar
[72]
Z. He , Y. Yang , J. W. Liu , S. H. Yu . Emerging tellurium nanostructures: Controllable synthesis and their applications. Chem. Soc. Rev., 2017, 46(10): 2732
CrossRef ADS Google scholar
[73]
J. S. Qiao , Y. H. Pan , F. Yang , C. Wang , Y. Chai , W. Ji . Few-layer tellurium: One-dimensional-like layered elementary semiconductor with striking physical properties. Sci. Bull. (Beijing), 2018, 63(3): 159
CrossRef ADS Google scholar
[74]
Y. Y. Liu , W. Z. Wu , W. A. III Goddard . Tellurium: Fast electrical and atomic transport along the weak interaction direction. J. Am. Chem. Soc., 2018, 140(2): 550
CrossRef ADS Google scholar
[75]
M. Peng , R. Z. Xie , Z. Wang , P. Wang , F. Wang , H. N. Ge , Y. Wang , F. Zhong , P. S. Wu , J. F. Ye , Q. Li , L. L. Zhang , X. Ge , Y. Ye , Y. C. Lei , W. Jiang , Z. G. Hu , F. Wu , X. H. Zhou , J. S. Miao , J. L. Wang , H. G. Yan , C. X. Shan , J. N. Dai , C. Q. Chen , X. S. Chen , W. Lu , W. D. Hu . Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci. Adv., 2021, 7(16): eabf7358
CrossRef ADS Google scholar
[76]
X. Han , H. M. Stewart , S. A. Shevlin , C. R. Catlow , Z. X. Guo . Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Lett., 2014, 14(8): 4607
CrossRef ADS Google scholar
[77]
H. Morgan Stewart , S. A. Shevlin , C. R. A. Catlow , Z. X. Guo . Compressive straining of bilayer phosphorene leads to extraordinary electron mobility at a new conduction band edge. Nano Lett., 2015, 15(3): 2006
CrossRef ADS Google scholar
[78]
S. Zhang , C. Li , Z. Xiao Guo , J. H. Cho , W. S. Su , Y. Jia . Magnetic evolution and anomalous Wilson transition in diagonal phosphorene nanoribbons driven by strain. Nanotechnology, 2015, 26(29): 295402
CrossRef ADS Google scholar
[79]
Z.ZhuC.CaiC.NiuC.WangQ.SunX.HanZ.GuoY.Jia, Tellurene-a monolayer of tellurium from first-principles prediction, arXiv: 1605.03253v1 (2016)
[80]
Z. L. Zhu , X. L. Cai , S. H. Yi , J. L. Chen , Y. W. Dai , C. Y. Niu , Z. X. Guo , M. H. Xie , F. Liu , J. H. Cho , Y. Jia , Z. Y. Zhang . Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study. Phys. Rev. Lett., 2017, 119(10): 106101
CrossRef ADS Google scholar
[81]
J. Wang , C. Z. Jiang , W. Q. Li , X. H. Xiao . Anisotropic low-dimensional materials for polarization-sensitive photodetectors: From materials to devices. Adv. Opt. Mater., 2022, 10(6): 2102436
CrossRef ADS Google scholar
[82]
X. Li , H. Y. Liu , C. M. Ke , W. Q. Tang , M. Y. Liu , F. H. Huang , Y. P. Wu , Z. M. Wu , J. Y. Kang . Review of anisotropic 2D materials: Controlled growth, optical anisotropy modulation, and photonic applications. Laser Photonics Rev., 2021, 15(12): 2100322
CrossRef ADS Google scholar
[83]
J. L. Zhao , D. T. Ma , C. Wang , Z. N. Guo , B. Zhang , J. Q. Li , G. H. Nie , N. Xie , H. Zhang . Recent advances in anisotropic two-dimensional materials and device applications. Nano Res., 2021, 14(4): 897
CrossRef ADS Google scholar
[84]
L. D. Xian , A. P. Paz , E. Bianco , P. M. Ajayan , A. Rubio . Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater., 2017, 4(4): 041003
CrossRef ADS Google scholar
[85]
K. C. Nomura . Optical activity in tellurium. Phys. Rev. Lett., 1960, 5(11): 500
CrossRef ADS Google scholar
[86]
V.M. AsninA.A. BakunA.M. DanishevskiiE.L. IvchenkoG.E. PikusA.A. Rogachev, “Circular” photogalvanic effect in optically active crystals, Solid State Commun. 30(9), 565 (1979)
[87]
T. Furukawa , Y. Shimokawa , K. Kobayashi , T. Itou . Observation of current-induced bulk magnetization in elemental tellurium. Nat. Commun., 2017, 8(1): 954
CrossRef ADS Google scholar
[88]
F. Calavalle , M. Suárez-Rodríguez , B. Martín-García , A. Johansson , D. C. Vaz , H. Yang , I. V. Maznichenko , S. Ostanin , A. Mateo-Alonso , A. Chuvilin , I. Mertig , M. Gobbi , F. Casanova , L. E. Hueso . Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires. Nat. Mater., 2022, 21(5): 526
CrossRef ADS Google scholar
[89]
L. A. Agapito , N. Kioussis , W. A. Goddard , N. P. Ong . Novel family of chiral-based topological insulators: Elemental tellurium under strain. Phys. Rev. Lett., 2013, 110(17): 176401
CrossRef ADS Google scholar
[90]
X. X. Xue , Y. X. Feng , L. Liao , Q. J. Chen , D. Wang , L. M. Tang , K. Chen . Strain tuning of electronic properties of various dimension elemental tellurium with broken screw symmetry. J. Phys.: Condens. Matter, 2018, 30(12): 125001
CrossRef ADS Google scholar
[91]
Y. J. Kwack , T. T. T. Can , W. S. Choi . Bottom-up water-based solution synthesis for a large MoS2 atomic layer for thin-film transistor applications. npj 2D Mater. Appl., 2021, 5(1): 84
CrossRef ADS Google scholar
[92]
M. S. Sokolikova , P. C. Sherrell , P. Palczynski , V. L. Bemmer , C. Mattevi . Direct solution-phase synthesis of 1T′ WSe2 nanosheets. Nat. Commun., 2019, 10(1): 712
CrossRef ADS Google scholar
[93]
Y. Sun , Y. Wang , D. Sun , B. R. Carvalho , C. G. Read , C. Lee , Z. Lin , K. Fujisawa , J. A. Robinson , V. H. Crespi , M. Terrones , R. E. Schaak . Low-temperature solution synthesis of few-layer 1T′-MoTe2 nanostructures exhibiting lattice compression. Angew. Chem. Int. Ed., 2016, 55(8): 2830
CrossRef ADS Google scholar
[94]
Z. Lu , M. Layani , X. Zhao , L. P. Tan , T. Sun , S. Fan , Q. Yan , S. Magdassi , H. H. Hng . Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small, 2014, 10(17): 3551
CrossRef ADS Google scholar
[95]
M. Ding , K. Liang , S. Yu , X. Zhao , H. Ren , B. Zhu , X. Hou , Z. Wang , P. Tan , H. Huang , Z. Zhang , X. Ma , G. Xu , S. Long . Aqueous-printed Ga2O3 films for high-performance flexible and heat-resistant deep ultraviolet photodetector and array. Adv. Opt. Mater., 2022, 10(16): 2200512
CrossRef ADS Google scholar
[96]
Y. Dong , Y. Zou , J. Song , J. Li , B. Han , Q. Shan , L. Xu , J. Xue , H. Zeng . An all-inkjet-printed flexible UV photodetector. Nanoscale, 2017, 9(25): 8580
CrossRef ADS Google scholar
[97]
J. R. Yao , F. F. Chen , J. J. Li , J. L. Du , D. Wu , Y. T. Tian , C. Zhang , X. J. Li , P. Lin . Mixed-dimensional Te/CdS van der Waals heterojunction for self-powered broadband photodetector. Nanotechnology, 2021, 32(41): 415201
CrossRef ADS Google scholar
[98]
F. L. Qin , F. Gao , M. J. Dai , Y. X. Hu , M. M. Yu , L. F. Wang , W. Feng , B. Li , P. A. Hu . Multilayer InSe−Te van der Waals heterostructures with an ultrahigh rectification ratio and ultrasensitive photoresponse. ACS Appl. Mater. Interfaces, 2020, 12(33): 37313
CrossRef ADS Google scholar
[99]
S.M. Beladi-MousaviA.M. PourrahimiZ.SoferM.Pumera, Atomically thin 2D-arsenene by liquid-phased exfoliation: Toward selective vapor sensing, Adv. Funct. Mater. 29(5), 1807004 (2019)
[100]
C. Zhang , M. Liang , S. H. Park , Z. Lin , A. Seral-Ascaso , L. Wang , A. Pakdel , C. Ó. Coileáin , J. Boland , O. Ronan , N. McEvoy , B. Lu , Y. Wang , Y. Xia , J. N. Coleman , V. Nicolosi . Extra lithium-ion storage capacity enabled by liquid-phase exfoliated indium selenide nanosheets conductive network. Energy Environ. Sci., 2020, 13(7): 2124
CrossRef ADS Google scholar
[101]
M. Bat-Erdene , M. Batmunkh , C. J. Shearer , S. A. Tawfik , M. J. Ford , L. Yu , A. J. Sibley , A. D. Slattery , J. S. Quinton , C. T. Gibson , J. G. Shapter . Efficient and fast synthesis of few-layer black phosphorus via microwave-assisted liquid-phase exfoliation. Small Methods, 2017, 1(12): 1700260
CrossRef ADS Google scholar
[102]
Z. J. Xie , C. Y. Xing , W. C. Huang , T. J. Fan , Z. J. Li , J. L. Zhao , Y. J. Xiang , Z. N. Guo , J. Q. Li , Z. G. Yang , B. Q. Dong , J. L. Qu , D. Y. Fan , H. Zhang . Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater., 2018, 28(16): 1705833
CrossRef ADS Google scholar
[103]
X. Li , L. Colombo , R. S. Ruoff . Synthesis of graphene films on copper foils by chemical vapor deposition. Adv. Mater., 2016, 28(29): 6247
CrossRef ADS Google scholar
[104]
Y. Huang , K. Yu , H. Li , K. Xu , Z. Liang , D. Walker , P. Ferreira , P. Fischer , D. Fan . Scalable fabrication of molybdenum disulfide nanostructures and their assembly. Adv. Mater., 2020, 32(43): 2003439
CrossRef ADS Google scholar
[105]
X. B. Li , X. Wang , J. H. Hong , D. Y. Liu , Q. L. Feng , Z. B. Lei , K. H. Liu , F. Ding , H. Xu . Nanoassembly growth model for subdomain and grain boundary formation in 1T′ layered ReS2. Adv. Funct. Mater., 2019, 29(49): 1906385
CrossRef ADS Google scholar
[106]
B. Q. Huang , Z. H. Lei , X. H. Cao , A. X. Wei , L. L. Tao , Y. B. Yang , J. Liu , Z. Q. Zheng , Y. Zhao . High-quality two-dimensional tellurium flakes grown by high-temperature vapor deposition. J. Mater. Chem. C, 2021, 9(40): 14394
CrossRef ADS Google scholar
[107]
X. Zhang , J. Z. Jiang , A. A. Suleiman , B. Jin , X. Z. Hu , X. Zhou , T. Y. Zhai . Hydrogen-assisted growth of ultrathin Te flakes with giant gate-dependent photoresponse. Adv. Funct. Mater., 2019, 29(49): 1906585
CrossRef ADS Google scholar
[108]
M. Tanaka , M. Auffray , H. Nakanotani , C. Adachi . Spontaneous formation of metastable orientation with well-organized permanent dipole moment in organic glassy films. Nat. Mater., 2022, 21(7): 819
CrossRef ADS Google scholar
[109]
D. Higgins , A. T. Landers , Y. Ji , S. Nitopi , C. G. Morales-Guio , L. Wang , K. Chan , C. Hahn , T. F. Jaramillo . Guiding electrochemical carbon dioxide reduction toward carbonyls using Copper silver thin films with interphase miscibility. ACS Energy Lett., 2018, 3(12): 2947
CrossRef ADS Google scholar
[110]
Y. Wang , L. Gan , J. Chen , R. Yang , T. Zhai . Achieving highly uniform two-dimensional PbI2 flakes for photodetectors via space confined physical vapor deposition. Sci. Bull. (Beijing), 2017, 62(24): 1654
CrossRef ADS Google scholar
[111]
A. Apte , E. Bianco , A. Krishnamoorthy , S. Yazdi , R. Rao , N. Glavin , H. Kumazoe , V. Varshney , A. Roy , F. Shimojo , E. Ringe , R. K. Kalia , A. Nakano , C. S. Tiwari , P. Vashishta , V. Kochat , P. M. Ajayan . Polytypism in ultrathin tellurium. 2D Mater., 2019, 6(1): 015013
CrossRef ADS Google scholar
[112]
C. S. Zhao , H. Batiz , B. Yasar , H. Kim , W. B. Ji , M. C. Scott , D. C. Chrzan , A. Javey . Tellurium single-crystal arrays by low-temperature evaporation and crystallization. Adv. Mater., 2021, 33(37): 2100860
CrossRef ADS Google scholar
[113]
J. T. Lu , L. J. Zhang , C. R. Ma , W. J. Huang , Q. J. Ye , H. X. Yi , Z. Q. Zheng , G. W. Yang , C. A. Liu , J. D. Yao . In situ integration of Te/Si 2D/3D heterojunction photodetectors toward UV-Vis-IR ultra-broadband photoelectric technologies. Nanoscale, 2022, 14(16): 6228
CrossRef ADS Google scholar
[114]
Q. S. Wang , M. Safdar , K. Xu , M. Mirza , Z. X. Wang , J. He . Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano, 2014, 8(7): 7497
CrossRef ADS Google scholar
[115]
I. Ferain , C. A. Colinge , J. P. Colinge . Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature, 2011, 479(7373): 310
CrossRef ADS Google scholar
[116]
M. M. Waldrop . The chips are down for Moore’s law. Nature, 2016, 530(7589): 144
CrossRef ADS Google scholar
[117]
P. Yang , J. J. Zha , G. Y. Gao , L. Zheng , H. X. Huang , Y. P. Xia , S. C. Xu , T. F. Xiong , Z. M. Zhang , Z. B. Yang , Y. Chen , D. K. Ki , J. J. Liou , W. G. Liao , C. L. Tan . Growth of tellurium nanobelts on h-BN for p-type transistors with ultrahigh hole mobility. Nano-Micro Lett., 2022, 14(1): 109
CrossRef ADS Google scholar
[118]
J. K. Qin , P. Y. Liao , M. Si , S. Gao , G. Qiu , J. Jian , Q. Wang , S. Q. Zhang , S. Huang , A. Charnas , Y. Wang , M. J. Kim , W. Wu , X. Xu , H. Y. Wang , L. Yang , Y. Khin Yap , P. D. Ye . Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes. Nat. Electron., 2020, 3(3): 141
CrossRef ADS Google scholar
[119]
T. Kim , C. H. Choi , P. Byeon , M. Lee , A. Song , K. B. Chung , S. Han , S. Y. Chung , K. S. Park , J. K. Jeong . Growth of high-quality semiconducting tellurium films for high-performance p-channel field-effect transistors with wafer-scale uniformity. npj 2D Mater. Appl., 2022, 6(1): 4
CrossRef ADS Google scholar
[120]
Y. Liu , J. Guo , E. B. Zhu , L. Liao , S. J. Lee , M. N. Ding , I. Shakir , V. Gambin , Y. Huang , X. F. Duan . Approaching the schottky-mott limit in van der waals metal-semiconductor junctions. Nature, 2018, 557(7707): 696
CrossRef ADS Google scholar
[121]
S. Song , Y. Sim , S. Y. Kim , J. H. Kim , I. Oh , W. Na , D. H. Lee , J. Wang , S. Yan , Y. Liu , J. Kwak , J. H. Chen , H. Cheong , J. W. Yoo , Z. Lee , S. Y. Kwon . Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal-semiconductor contacts at the Schottky−Mott limit. Nat. Electron., 2020, 3(4): 207
CrossRef ADS Google scholar
[122]
P. C. Shen , C. Su , Y. X. Lin , A. S. Chou , C. C. Cheng , J. H. Park , M. H. Chiu , A. Y. Lu , H. L. Tang , M. M. Tavakoli , G. Pitner , X. Ji , Z. Y. Cai , N. N. Mao , J. T. Wang , V. C. Tung , J. Li , J. Bokor , A. Zettl , C. I. Wu , T. Palacios , L. J. Li , J. Kong . Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021, 593(7858): 211
CrossRef ADS Google scholar
[123]
M. Wu , Y. Xiao , Y. Zeng , Y. Zhou , X. Zeng , L. Zhang , W. Liao . Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat, 2021, 3(4): 362
CrossRef ADS Google scholar
[124]
X. K. Zhang , Z. Kang , L. Gao , B. S. Liu , H. H. Yu , Q. L. Liao , Z. Zhang , Y. Zhang . Molecule-upgraded van der waals contacts for Schottky-barrier-free electronics. Adv. Mater., 2021, 33(45): 2104935
CrossRef ADS Google scholar
[125]
Y. Y. Liu , P. Stradins , S. H. Wei . Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv., 2016, 2(4): e1600069
CrossRef ADS Google scholar
[126]
Y. Wang , H. Yuan , Z. Li , J. Yang . Schottky and ohmic contacts at α-tellurene/2D metal interfaces. ACS Appl. Electron. Mater., 2022, 4(3): 1082
CrossRef ADS Google scholar
[127]
X. K. Zhang , H. H. Yu , W. H. Tang , X. F. Wei , L. Gao , M. Y. Hong , Q. L. Liao , Z. Kang , Z. Zhang , Y. Zhang . All-van-der-Waals barrier-free contacts for high-mobility transistors. Adv. Mater., 2022, 34(34): 2202345
CrossRef ADS Google scholar
[128]
W. Jiang , X. D. Wang , Y. Chen , S. Q. Wu , B. M. Wu , X. Yang , T. Lin , H. Shen , X. J. Meng , X. Wu , J. H. Chu , J. L. Wang . End-bonded contacts of tellurium transistors. ACS Appl. Mater. Interfaces, 2021, 13(6): 7766
CrossRef ADS Google scholar
[129]
D. A. Nguyen , D. Y. Park , J. Lee , N. T. Duong , C. Park , D. H. Nguyen , T. S. Le , D. Suh , H. Yang , M. S. Jeong . Patterning of type-II Dirac semimetal PtTe2 for optimized interface of tellurene optoelectronic device. Nano Energy, 2021, 86: 106049
CrossRef ADS Google scholar
[130]
W. L. Ma , Y. Q. Gao , L. Y. Shang , W. Zhou , N. J. Yao , L. Jiang , Q. X. Qiu , J. B. Li , Y. Shi , Z. G. Hu , Z. M. Huang . Ultrabroadband tellurium photoelectric detector from visible to millimeter wave. Adv. Sci. (Weinh.), 2022, 9(5): 2103873
CrossRef ADS Google scholar
[131]
S. Q. Lin , W. Li , Z. W. Chen , J. W. Shen , B. H. Ge , Y. Z. Pei . Tellurium as a high-performance elemental thermoelectric. Nat. Commun., 2016, 7(1): 10287
CrossRef ADS Google scholar
[132]
G. Qiu , S. Huang , M. Segovia , P. K. Venuthurumilli , Y. Wang , W. Wu , X. Xu , P. D. Ye . Thermoelectric performance of 2D tellurium with accumulation contacts. Nano Lett., 2019, 19(3): 1955
CrossRef ADS Google scholar
[133]
Z. P. Sun , A. Martinez , F. Wang . Optical modulators with 2D layered materials. Nat. Photonics, 2016, 10(4): 227
CrossRef ADS Google scholar
[134]
S. Deckoff-Jones , Y. X. Wang , H. T. Lin , W. Z. Wu , J. J. Hu . Tellurene: A multifunctional material for midinfrared optoelectronics. ACS Photonics, 2019, 6(7): 1632
CrossRef ADS Google scholar
[135]
H. T. Lin , Y. Song , Y. Z. Huang , D. Kita , S. Deckoff-Jones , K. Q. Wang , L. Li , J. Y. Li , H. Y. Zheng , Z. Q. Luo , H. Z. Wang , S. Novak , A. Yadav , C. C. Huang , R. J. Shiue , D. Englund , T. Gu , D. Hewak , K. Richardson , J. Kong , J. J. Hu . Chalcogenide glass-on-graphene photonics. Nat. Photonics, 2017, 11(12): 798
CrossRef ADS Google scholar
[136]
Z. Ma , K. Kikunaga , H. Wang , S. Sun , R. Amin , R. Maiti , M. H. Tahersima , H. Dalir , M. Miscuglio , V. J. Sorger . Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity. ACS Photonics, 2020, 7(4): 932
CrossRef ADS Google scholar
[137]
H. Y. Lan , Y. H. Hsieh , Z. Y. Chiao , D. Jariwala , M. H. Shih , T. J. Yen , O. Hess , Y. J. Lu . Gate-tunable plasmon-enhanced photodetection in a monolayer MoS2 phototransistor with ultrahigh photoresponsivity. Nano Lett., 2021, 21(7): 3083
CrossRef ADS Google scholar
[138]
S. Castilla , I. Vangelidis , V. V. Pusapati , J. Goldstein , M. Autore , T. Slipchenko , K. Rajendran , S. Kim , K. Watanabe , T. Taniguchi , L. Martin-Moreno , D. Englund , K. J. Tielrooij , R. Hillenbrand , E. Lidorikis , F. H. L. Koppens . Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat. Commun., 2020, 11(1): 4872
CrossRef ADS Google scholar
[139]
Y. Zhang , F. Zhang , L. M. Wu , Y. P. Zhang , W. C. Huang , Y. F. Tang , L. P. Hu , P. Huang , X. W. Zhang , H. Zhang . Van der Waals integration of bismuth quantum dots-decorated tellurium nanotubes (Te@Bi) heterojunctions and plasma-enhanced optoelectronic applications. Small, 2019, 15(47): 1903233
CrossRef ADS Google scholar
[140]
Q. Zhao , F. Gao , H. Chen , W. Gao , M. Xia , Y. Pan , H. Shi , S. Su , X. Fang , J. Li . High performance polarization-sensitive self-powered imaging photodetectors based on a p-Te/n-MoSe2 van der Waals heterojunction with strong interlayer transition. Mater. Horiz., 2021, 8(11): 3113
CrossRef ADS Google scholar
[141]
J.YaoF.ChenJ.LiJ.DuD.WuY.TianC.ZhangJ.YangX.LiP.Lin, A high-performance short-wave infrared phototransistor based on a 2D tellurium/MoS2 van der Waals heterojunction, J. Mater. Chem. C 9(38), 13123 (2021)
[142]
M. Peng , Y. Y. Yu , Z. Wang , X. Fu , Y. Gu , Y. Wang , K. Zhang , Z. H. Zhang , M. Huang , Z. Z. Cui , F. Zhong , P. S. Wu , J. F. Ye , T. F. Xu , Q. Li , P. Wang , F. Y. Yue , F. Wu , J. N. Dai , C. Q. Chen , W. D. Hu . Room-temperature blackbody-sensitive and fast infrared photodetectors based on 2D tellurium/graphene van der Waals heterojunction. ACS Photonics, 2022, 9(5): 1775
CrossRef ADS Google scholar
[143]
Y. Liu , N. O. Weiss , X. D. Duan , H. C. Cheng , Y. Huang , X. F. Duan . Van der Waals heterostructures and devices. Nat. Rev. Mater., 2016, 1(9): 16042
CrossRef ADS Google scholar
[144]
H. Y. Lee , S. Kim . Nanowires for 2D material-based photonic and optoelectronic devices. Nanophotonics, 2022, 11(11): 2571
CrossRef ADS Google scholar
[145]
J. Z. Wu , M. Gong . Nanohybrid photodetectors. Adv. Photon. Res., 2021, 2(7): 2100015
CrossRef ADS Google scholar
[146]
T.ZhengM.YangY.SunL.HanY.PanQ.ZhaoZ.ZhengN.HuoW.GaoJ.Li, A solution-fabricated tellurium/silicon mixed-dimensional van der Waals heterojunction for self-powered photodetectors, J. Mater. Chem. C 10(18), 7283 (2022)
[147]
X. Cao , Z. Lei , B. Huang , A. Wei , L. Tao , Y. Yang , Z. Zheng , X. Feng , J. Li , Y. Zhao . Non-layered Te/In2S3 tunneling heterojunctions with ultrahigh photoresponsivity and fast photoresponse. Small, 2022, 18(18): 2200445
CrossRef ADS Google scholar
[148]
L.HanM.YangP.WenW.GaoN.HuoJ.Li, A high performance self-powered photodetector based on a 1D Te-2D WS2 mixed-dimensional heterostructure, Nanoscale Adv. 3(9), 2657 (2021)
[149]
J. J. Tao , J. Jiang , S. N. Zhao , Y. Zhang , X. X. Li , X. Fang , P. Wang , W. Hu , Y. H. Lee , H. L. Lu , D. W. Zhang . Fabrication of 1D Te/2D ReS2 mixed-dimensional van der Waals p−n heterojunction for high-performance phototransistor. ACS Nano, 2021, 15(2): 3241
CrossRef ADS Google scholar
[150]
W. Wang , Y. Meng , W. Wang , Z. Zhang , P. Xie , Z. Lai , X. Bu , Y. Li , C. Liu , Z. Yang , S. Yip , J. C. Ho . Highly efficient full van der Waals 1D p-Te/2D n-Bi2O2Se heterodiodes with nanoscale ultra-photosensitive channels. Adv. Funct. Mater., 2022, 32(30): 2203003
CrossRef ADS Google scholar
[151]
D. Zhao , Y. Chen , W. Jiang , X. Wang , J. Liu , X. Huang , S. Han , T. Lin , H. Shen , X. Wang , W. Hu , X. Meng , J. Chu , J. Wang . Gate-tunable photodiodes based on mixed-dimensional Te/MoTe2 van der Waals heterojunctions. Adv. Electron. Mater., 2021, 7(5): 2001066
CrossRef ADS Google scholar
[152]
X. Zhang , Y. Yang , Z. Li , X. Liu , C. Zhang , S. Peng , J. Han , H. Zhou , J. Gou , F. Xiu , J. Wang . Weyl semiconductor Te/Sb2Se3 heterostructure for broadband photodetection and its binary photoresponse by C60 as charge-regulation medium. Adv. Opt. Mater., 2021, 9(21): 2101256
CrossRef ADS Google scholar
[153]
M. Naqi , K. H. Choi , Y. Cho , H. Y. Rho , H. Cho , P. Pujar , N. liu , H. S. Kim , J. Y. Choi , S. Kim . Flexible platform oriented: Unipolar-type hybrid dual-channel scalable field-effect phototransistors array based on tellurium nanowires and tellurium-film with highly linear photoresponsivity. Adv. Electron. Mater., 2022, 8(7): 2101331
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22222505 and 51972204), the Natural Science Basic Research Plan in Shaanxi Province (Nos. 2021JM316 and 2021JM-203), the Science and Technology Program of Shaanxi Province (No. 2017KJXX-16), the Shaanxi Sanqin Scholars Innovation Team, the Fundamental Innovation Project and Young Scientist Initiative Project in School of Materials Science and Engineering (SNNU).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7487 KB)

Accesses

Citations

Detail

Sections
Recommended

/