Collisional dynamics of symmetric two-dimensional quantum droplets

Yanming Hu, Yifan Fei, Xiao-Long Chen, Yunbo Zhang

PDF(2827 KB)
PDF(2827 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (6) : 61505. DOI: 10.1007/s11467-022-1192-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Collisional dynamics of symmetric two-dimensional quantum droplets

Author information +
History +

Abstract

The collisional dynamics of two symmetric droplets with equal intraspecies scattering lengths and particle number density for each component is studied by solving the corresponding extended Gross−Pitaevskii equation in two dimensions by including a logarithmic correction term in the usual contact interaction. We find the merging droplet after collision experiences a quadrupole oscillation in its shape and the oscillation period is found to be independent of the incidental momentum for small droplets. With increasing collision momentum the colliding droplets may separate into two, or even more, and finally into small pieces of droplets. For these dynamical phases we manage to present boundaries determined by the remnant particle number in the central area and the damped oscillation of the quadrupole mode. A stability peak for the existence of droplets emerges at the critical particle numberNc ≃ 48 for the quasi-Gaussian and flat-top shapes of the droplets.

Graphical abstract

Keywords

ultracold atoms / quantum droplets / collisions

Cite this article

Download citation ▾
Yanming Hu, Yifan Fei, Xiao-Long Chen, Yunbo Zhang. Collisional dynamics of symmetric two-dimensional quantum droplets. Front. Phys., 2022, 17(6): 61505 https://doi.org/10.1007/s11467-022-1192-z

References

[1]
H. Margenau . Van der Waals forces. Rev. Mod. Phys., 1939, 11( 1): 1
CrossRef ADS Google scholar
[2]
A. Bulgac . Dilute quantum droplets. Phys. Rev. Lett., 2002, 89( 5): 050402
CrossRef ADS Google scholar
[3]
T. D. Lee , K. Huang , C. N. Yang . Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev., 1957, 106( 6): 1135
CrossRef ADS Google scholar
[4]
D. S. Petrov . Quantum mechanical stabilization of a collapsing Bose−Bose mixture. Phys. Rev. Lett., 2015, 115( 15): 155302
CrossRef ADS Google scholar
[5]
D. S. Petrov , G. E. Astrakharchik . Ultradilute low-dimensional liquids. Phys. Rev. Lett., 2016, 117( 10): 100401
CrossRef ADS Google scholar
[6]
Y. Wang , L. Guo , S. Yi , T. Shi . Theory for self-bound states of dipolar Bose−Einstein condensates. Phys. Rev. Res., 2020, 2( 4): 043074
CrossRef ADS Google scholar
[7]
Y. Ma , C. Peng , X. Cui . Borromean droplet in three-component ultracold Bose gases. Phys. Rev. Lett., 2021, 127( 4): 043002
CrossRef ADS Google scholar
[8]
Y. Li , Z. Chen , Z. Luo , C. Huang , H. Tan , W. Pang , B. A. Malomed . Two-dimensional vortex quantum droplets. Phys. Rev. A, 2018, 98( 6): 063602
CrossRef ADS Google scholar
[9]
H. Hu , X. J. Liu . Consistent theory of self-bound quantum droplets with bosonic pairing. Phys. Rev. Lett., 2020, 125( 19): 195302
CrossRef ADS Google scholar
[10]
Z. H. Luo , W. Pang , B. Liu , Y. Y. Li , B. A. Malomed . A new form of liquid matter: Quantum droplets. Front. Phys., 2021, 16( 3): 32201
CrossRef ADS Google scholar
[11]
S. I. Mistakidis A. G. Volosniev R. E. Barfknecht T. Fogarty Th. Busch A. Foerster P. Schmelcher N. T. Zinner, Cold atoms in low dimensions − a laboratory for quantum dynamics, arXiv: 2202.11071 ( 2022)
[12]
I. Ferrier-Barbut , H. Kadau , M. Schmitt , M. Wenzel , T. Pfau . Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett., 2016, 116( 21): 215301
CrossRef ADS Google scholar
[13]
M. Schmitt , M. Wenzel , F. Böttcher , I. Ferrier-Barbut , T. Pfau . Self-bound droplets of a dilute magnetic quantum liquid. Nature, 2016, 539( 7628): 259
CrossRef ADS Google scholar
[14]
M. Guo , T. Pfau . A new state of matter of quantum droplets. Front. Phys., 2021, 16( 3): 32202
CrossRef ADS Google scholar
[15]
B. A. Malomed . The family of quantum droplets keeps expanding. Front. Phys., 2021, 16( 2): 22504
CrossRef ADS Google scholar
[16]
Y. Y. Zheng , S. T. Chen , Z. P. Huang , S. X. Dai , B. Liu , Y. Y. Li , S. R. Wang . Quantum droplets in two-dimensional optical lattices. Front. Phys., 2021, 16( 2): 22501
CrossRef ADS Google scholar
[17]
L. Chomaz I. Ferrier-Barbut F. Ferlaino B. Laburthe-Tolra B. L. Lev T. Pfau, Dipolar physics: A review of experiments with magnetic quantum gases, arXiv: 2201.02672 ( 2022)
[18]
K. E. Wilson , A. Guttridge , J. Segal , S. L. Cornish . Quantum degenerate mixtures of Cs and Yb. Phys. Rev. A, 2021, 103( 3): 033306
CrossRef ADS Google scholar
[19]
C. R. Cabrera , L. Tanzi , J. Sanz , B. Naylor , P. Thomas , P. Cheiney , L. Tarruell . Quantum liquid droplets in a mixture of Bose−Einstein condensates. Science, 2018, 359( 6373): 301
CrossRef ADS Google scholar
[20]
D. Baillie , P. B. Blakie . Droplet crystal ground states of a dipolar Bose gas. Phys. Rev. Lett., 2018, 121( 19): 195301
CrossRef ADS Google scholar
[21]
M. A. Norcia , C. Politi , L. Klaus , E. Poli , M. Sohmen , M. J. Mark , R. N. Bisset , L. Santos , F. Ferlaino . Two-dimensional supersolidity in a dipolar quantum gas. Nature, 2021, 596( 7872): 357
CrossRef ADS Google scholar
[22]
P. Cheiney , C. R. Cabrera , J. Sanz , B. Naylor , L. Tanzi , L. Tarruell . Bright soliton to quantum droplet transition in a mixture of Bose−Einstein condensates. Phys. Rev. Lett., 2018, 120( 13): 135301
CrossRef ADS Google scholar
[23]
G. Semeghini , G. Ferioli , L. Masi , C. Mazzinghi , L. Wolswijk , F. Minardi , M. Modugno , G. Modugno , M. Inguscio , M. Fattori . Self-bound quantum droplets of atomic mixtures in free space. Phys. Rev. Lett., 2018, 120( 23): 235301
CrossRef ADS Google scholar
[24]
G. Ferioli , G. Semeghini , L. Masi , G. Giusti , G. Modugno , M. Inguscio , A. Gallemi , A. Recati , M. Fattori . Collisions of self-bound quantum droplets. Phys. Rev. Lett., 2019, 122( 9): 090401
CrossRef ADS Google scholar
[25]
V. Cikojević , L. V. Markić , M. Pi , M. Barranco , F. Ancilotto , J. Boronat . Dynamics of equilibration and collisions in ultradilute quantum droplets. Phys. Rev. Res., 2021, 3( 4): 043139
CrossRef ADS Google scholar
[26]
J. Lao , Z. Zhou , X. Zhang , F. Ye , H. Zhong . Oscillatory stability of quantum droplets in PT-symmetric optical lattice. Commum. Theor. Phys., 2021, 73( 6): 065103
CrossRef ADS Google scholar
[27]
G. E. Astrakharchik , B. A. Malomed . Dynamics of one-dimensional quantum droplets. Phys. Rev. A, 2018, 98( 1): 013631
CrossRef ADS Google scholar
[28]
L. Parisi , S. Giorgini . Quantum droplets in one-dimensional Bose mixtures: A quantum Monte Carlo study. Phys. Rev. A, 2020, 102( 2): 023318
CrossRef ADS Google scholar
[29]
S. I. Mistakidis , T. Mithun , P. G. Kevrekidis , H. R. Sadeghpour , P. Schmelcher . Formation and quench of homonuclear and heteronuclear quantum droplets in one dimension. Phys. Rev. Res., 2021, 3( 4): 043128
CrossRef ADS Google scholar
[30]
B. B. Baizakov , B. A. Malomed , M. Salerno . Multidimensional solitons in a low-dimensional periodic potential. Phys. Rev. A, 2004, 70( 5): 053613
CrossRef ADS Google scholar
[31]
L. Lehtovaara , J. Toivanen , J. Eloranta . Solution of time-independent Schrödinger equation by the imaginary time propagation method. J. Comput. Phys., 2007, 221( 1): 148
CrossRef ADS Google scholar
[32]
N. Ashgriz , J. Y. Poo . Coalescence and separation in binary collisions of liquid drops. J. Fluid Mech., 1990, 221 : 183
CrossRef ADS Google scholar
[33]
J. Qian , C. K. Law . Regimes of coalescence and separation in droplet collision. J. Fluid Mech., 1997, 331 : 59
CrossRef ADS Google scholar
[34]
Y. Pan , K. Suga . Numerical simulation of binary liquid droplet collision. Phys. Fluids, 2005, 17( 8): 082105
CrossRef ADS Google scholar

Acknowledgements

The authors are grateful to Dr. Li Chen for illuminating discussions on FFT. This work was supported by the National Natural Science Foundation of China (Grant No. 12074340) and the Science Foundation of Zhejiang Sci-Tech University (ZSTU) under Grant Nos. 20062098-Y and 21062339-Y.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(2827 KB)

Accesses

Citations

Detail

Sections
Recommended

/