Galactic cosmic ray propagation: sub-PeV diffuse gamma-ray and neutrino emission
Bing-Qiang Qiao, Wei Liu, Meng-Jie Zhao, Xiao-Jun Bi, Yi-Qing Guo
Galactic cosmic ray propagation: sub-PeV diffuse gamma-ray and neutrino emission
The Tibet ASγ experiment just reported their measurement of sub-PeV diffuse gamma-ray emission from the Galactic disk, with the highest energy up to 957 TeV. These diffuse gamma rays are most likely the hadronic origin by cosmic ray (CR) interaction with interstellar gas in the galaxy. This measurement provides direct evidence to the hypothesis that the Galactic Cosmic Rays (GCRs) can be accelerated beyond PeV energies. In this work, we try to explain the sub-PeV diffuse gamma-ray spectrum with different CR propagation models. We find that there is a tension between the sub-PeV diffuse gamma-ray and the local CR spectrum. To describe the sub-PeV diffuse gamma-ray flux, it generally requires larger local CR flux than measurement in the knee region. We further calculate the PeV neutrino flux from the CR propagation model. Even all of these sub-PeV diffuse gamma rays originate from the propagation, the Galactic Neutrinos (GNs) only account for less than ~15% of observed flux, most of which are still from extragalactic sources.
galactic cosmic ray / diffuse gamma ray / neutrino
[1] |
M. Nagano, T. Hara, Y. Hatano, N. Hayashida, S. Kawaguchi, K. Kamata, T. Kifune, Y. Mizumoto. Energy spectrum of primary cosmic rays between 1014.5 and 1018 eV. J. Phys. G Nucl. Phys., 1984, 10(9): 1295
CrossRef
ADS
Google scholar
|
[2] |
M. A. K. Glasmacher, M. A. Catanese, M. C. Chantell.
CrossRef
ADS
Google scholar
|
[3] |
M. Aglietta, B. Alessandro, P. Antonioli, F. Arneodo, L. Bergamasco.
CrossRef
ADS
Google scholar
|
[4] |
T.AntoniW. D. ApelA.F. BadeaK.BekkA.Bercuci,
|
[5] |
M. Amenomori, X. J. Bi, D. Chen, S. W. Cui.
CrossRef
ADS
Google scholar
|
[6] |
K. H. Kampert, M. Unger. Measurements of the cosmic ray composition with air shower experiments. Astropart. Phys., 2012, 35(10): 660
CrossRef
ADS
Google scholar
|
[7] |
R.AloisioP. BlasiI.De MitriS.Petrera, Selected Topics in Cosmic Ray Physics, page 1, 2018
|
[8] |
W. Baade, F. Zwicky. Cosmic rays from supernovae. Contributions from the Mount Wilson Observatory, 1934, 3: 79
|
[9] |
R. Abbasi, Y. Abdou, T. Abu-Zayyad, M. Ackermann, J. Adams.
CrossRef
ADS
Google scholar
|
[10] |
M. G. Aartsen, K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar.
CrossRef
ADS
Google scholar
|
[11] |
M. Amenomori, X. J. Bi, D. Chen, T. L. Chen, W. Y. Chen.
CrossRef
ADS
Google scholar
|
[12] |
HESS Collaboration. Acceleration of petaelectronvolt protons in the Galactic Centre. Nature, 2016, 531(7595): 476
CrossRef
ADS
Google scholar
|
[13] |
TibetASγ CollaborationM.AmenomoriY.W. Bao,
|
[14] |
A.U. AbeysekaraA.AlbertR.Alfaro,
|
[15] |
DAMPE Collaboration. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons. Nature, 2017, 552(7683): 63
CrossRef
ADS
Google scholar
|
[16] |
D. Kerszberg for the H.E.S.S. Collaboration, The cosmic-ray electron spectrum measured with H.E.S.S. 2017
|
[17] |
A. Borione, M. A. Catanese, M. C. Chantell, C. E. Covault, J. W. Cronin, B. E. Fick, L. F. Fortson, J. Fowler, M. A. K. Glasmacher, K. D. Green, D. B. Kieda, J. Matthews, B. J. Newport, D. Nitz, R. A. Ong, S. Oser, D. Sinclair, J. C. van der Velde. Constraints on gamma-ray emission from the galactic plane at 300 TeV. Astrophys. J., 1998, 493(1): 175
CrossRef
ADS
Google scholar
|
[18] |
W.D. ApelJ. C. Arteaga-VelázquezK.Bekk,
|
[19] |
M. Amenomori, Y. W. Bao, X. J. Bi, D. Chen, T. L. Chen.
CrossRef
ADS
Google scholar
|
[20] |
R.-Y.LiuX.-Y. Wang, Origin of galactic sub-PeV diffuse gamma-ray emission: Constraints from high-energy neutrino observations, arXiv: 2104.05609 (2021)
|
[21] |
V.VecchiottiF.ZuccariniF.L. VillanteG.Pagliaroli, Unresolved sources naturally contribute to PeV γ-ray diffuse emission observed by Tibet ASγ, arXiv: 2107.14584 (2021)
|
[22] |
S. Koldobskiy, A. Neronov, D. Semikoz. Pion decay model of the Tibet-AS γ PeV gamma-ray signal. Phys. Rev. D, 2021, 104(4): 043010
CrossRef
ADS
Google scholar
|
[23] |
P. Zhang, B. Qiao, Q. Yuan, S. Cui, Y. Guo. Ultrahigh-energy diffuse gamma ray emission from cosmic-ray interactions with the medium surrounding acceleration sources. Phys. Rev. D, 2022, 105(2): 023002
CrossRef
ADS
Google scholar
|
[24] |
IceCube Collaboration. Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science, 2013, 342(6161): 1242856
CrossRef
ADS
Google scholar
|
[25] |
M. G. Aartsen, R. Abbasi, Y. Abdou, M. Ackermann, J. Adams.
CrossRef
ADS
Google scholar
|
[26] |
M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers.
CrossRef
ADS
Google scholar
|
[27] |
M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers.
CrossRef
ADS
Google scholar
|
[28] |
M. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers.
CrossRef
ADS
Google scholar
|
[29] |
M. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers.
CrossRef
ADS
Google scholar
|
[30] |
M.G. AartsenK.AbrahamM.Ackermann,
|
[31] |
Y. Q. Guo, H. B. Hu, Q. Yuan, Z. Tian, X. J. Gao. Pinpointing the knee of cosmic rays with diffuse PeV γ-rays and neutrinos. Astrophys. J., 2014, 795(1): 100
CrossRef
ADS
Google scholar
|
[32] |
P. Lipari, S. Vernetto. Diffuse galactic gamma-ray flux at very high energy. Phys. Rev. D, 2018, 98(4): 043003
CrossRef
ADS
Google scholar
|
[33] |
Q. Yuan, S. J. Lin, K. Fang, X. J. Bi. Propagation of cosmic rays in the AMS-02 era. Phys. Rev. D, 2017, 95(8): 083007
CrossRef
ADS
Google scholar
|
[34] |
O.AdrianiG. C. BarbarinoG.A. BazilevskayaR.BellottiM.Boezio,
|
[35] |
P.BlasiE. Amato, Diffusive propagation of cosmic rays from supernova remnants in the Galaxy (II): anisotropy, arXiv: 1105.4529 (2011)
|
[36] |
W. Liu, X. J. Bi, S. J. Lin, B. B. Wang, P. F. Yin. Excesses of cosmic ray spectra from a single nearby source. Phys. Rev. D, 2017, 96(2): 023006
CrossRef
ADS
Google scholar
|
[37] |
N. Tomassetti. Origin of the cosmic-ray spectral hardening. Astrophys. J. Lett., 2012, 752(1): L13
CrossRef
ADS
Google scholar
|
[38] |
W. Liu, Y.-Q. Guo, Q. Yuan. Indication of nearby source signatures of cosmic rays from energy spectra and anisotropies. J. Cosmol. Astropart. Phys., 2019, 10: 010
CrossRef
ADS
Google scholar
|
[39] |
B.-Q. Qiao, W. Liu, Y.-Q. Guo, Q. Yuan. Anisotropies of different mass compositions of cosmic rays. J. Cosmol. Astropart. Phys., 2019, 12: 007
|
[40] |
Y. Q. Guo, Q. Yuan. Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse γ rays with spatially-dependent propagation. Phys. Rev. D, 2018, 97(6): 063008
CrossRef
ADS
Google scholar
|
[41] |
Y. Q. Guo, Z. Tian, C. Jin. Spatial-dependent propagation of cosmic rays results in the spectrum of proton, ratios of P/P, and B/C, and anisotropy of nuclei. ApJ, 2016, 819: 54
CrossRef
ADS
Google scholar
|
[42] |
W. Liu, Y. Yao, Y. Q. Guo. Revisiting the spatially dependent propagation model with the latest observations of cosmic-ray nuclei. Astrophys. J., 2018, 869(2): 176
CrossRef
ADS
Google scholar
|
[43] |
P. Blasi, E. Amato, P. D. Serpico. Spectral breaks as a signature of cosmic ray induced turbulence in the galaxy. Phys. Rev. Lett., 2012, 109(6): 061101
CrossRef
ADS
Google scholar
|
[44] |
E. S. Seo, V. S. Ptuskin. Stochastic reacceleration of cosmic rays in the interstellar medium. Astrophys. J., 1994, 431: 705
CrossRef
ADS
Google scholar
|
[45] |
G. Case, D. Bhattacharya. Revisiting the galactic supernova remnant distribution. Astron. Astrophys. Suppl. Ser., 1996, 120: 437
|
[46] |
M. Ahlers. Deciphering the dipole anisotropy of galactic cosmic rays. Phys. Rev. Lett., 2016, 117(15): 151103
CrossRef
ADS
Google scholar
|
[47] |
M. Aguilar, L. Ali Cavasonza, G. Ambrosi, L. Arruda, N. Attig.
CrossRef
ADS
Google scholar
|
[48] |
Y. S. Yoon, T. Anderson, A. Barrau, N. B. Conklin, S. Coutu.
CrossRef
ADS
Google scholar
|
[49] |
Q. An, R. Asfandiyarov, P. Azzarello, P. Bernardini, X. J. Bi.
CrossRef
ADS
Google scholar
|
[50] |
M. Aguilar, D. Aisa, B. Alpat, A. Alvino, G. Ambrosi.
CrossRef
ADS
Google scholar
|
[51] |
M. Aguilar, L. Ali Cavasonza, B. Alpat, G. Ambrosi, L. Arruda.
CrossRef
ADS
Google scholar
|
[52] |
E. Atkin, V. Bulatov, V. Dorokhov.
CrossRef
ADS
Google scholar
|
[53] |
W.D. ApelJ. C. Arteaga-VelázquezK.Bekk M.BertainaJ. Blümer,
|
[54] |
M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers.
CrossRef
ADS
Google scholar
|
[55] |
J. C. Arteaga-Velázquez, HAWC measurements of the energy spectra of cosmic ray protons, helium and heavy nuclei in the TeV range, arXiv: 2108.03208 (2021)
|
[56] |
J. R. Hörandel. On the knee in the energy spectrum of cosmic rays. Astropart. Phys., 2003, 19(2): 193
CrossRef
ADS
Google scholar
|
[57] |
M. G. Aartsen, R. Abbasi, M. Ackermann, J. Adams, J. A. Aguilar.
CrossRef
ADS
Google scholar
|
[58] |
R. Alfaro, C. Alvarez, J. D. Álvarez, R. Arceo, J. C. Arteaga-Velázquez.
CrossRef
ADS
Google scholar
|
[59] |
G.Di Sciascio, Measurement of the cosmic ray energy spectrum with ARGO-YBJ, arXiv: 1408.6739 (2014)
|
[60] |
A. D. Panov, J. H. Jr Adams, H. S. Ahn, G. L. Bashinzhagyan, J. W. Watts, J. P. Wefel, J. Wu, O. Ganel, T. G. Guzik, V. I. Zatsepin, I. Isbert, K. C. Kim, M. Christl, E. N. Kouznetsov, M. I. Panasyuk, E. S. Seo, N. V. Sokolskaya, J. Chang, W. K. H. Schmidt, A. R. Fazely. Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results. Bull. Russ. Acad. Sci. Phys., 2009, 73(5): 564
CrossRef
ADS
Google scholar
|
[61] |
E. V. Atkin, V. L. Bulatov, O. A. Vasiliev, A. G. Voronin, N. V. Gorbunov.
CrossRef
ADS
Google scholar
|
[62] |
J.-L. Zhang, X.-J. Bi, H.-B. Hu. Very high energy γ ray absorption by the galactic interstellar radiation field. Astron. Astrophys., 2006, 449(2): 641
CrossRef
ADS
Google scholar
|
[63] |
I. V. Moskalenko, T. A. Porter, A. W. Strong. Attenuation of very high energy gamma rays by the Milky way interstellar radiation field. Astrophys. J., 2006, 640(2): L155
CrossRef
ADS
Google scholar
|
[64] |
B. Bartoli, P. Bernardini, X. J. Bi, P. Branchini, A. Budano.
CrossRef
ADS
Google scholar
|
[65] |
M. D. Kistler, J. F. Beacom. Guaranteed and prospective galactic TeV neutrino sources. Phys. Rev. D, 2006, 74(6): 063007
CrossRef
ADS
Google scholar
|
[66] |
R.AbbasiM. AckermannJ.Adams,
|
[67] |
S. Adrián-Martínez, A. Albert, M. André, M. Anghinolfi, G. Anton.
CrossRef
ADS
Google scholar
|
[68] |
M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers.
CrossRef
ADS
Google scholar
|
[69] |
F. Aharonian, R. Yang, E. de Oña Wilhelmi. Massive stars as major factories of galactic cosmic rays. Nat. Astron., 2019, 3(6): 561
CrossRef
ADS
Google scholar
|
[70] |
P. Cristofari. The hunt for pevatrons: The case of supernova remnants. Universe, 2021, 7(9): 324
CrossRef
ADS
Google scholar
|
[71] |
A. M. Bykov, D. C. Ellison, P. E. Gladilin, S. M. Osipov. Ultrahard spectra of PeV neutrinos from super novae in compact star clusters. Mon. Not. R. Astron. Soc., 2015, 453(1): 113
CrossRef
ADS
Google scholar
|
[72] |
A. M. Bykov, A. E. Petrov, M. E. Kalyashova, S. V. Troitsky. PeV photon and neutrino flares from galactic gamma-ray binaries. Astrophys. J. Lett., 2021, 921(1): L10
CrossRef
ADS
Google scholar
|
[73] |
R. Yang, F. Aharonian, C. Evoli. Radial distribution of the diffuse γ-ray emissivity in the galactic disk. Phys. Rev. D, 2016, 93(12): 123007
CrossRef
ADS
Google scholar
|
[74] |
A. W. Strong, I. V. Moskalenko. Propagation of cosmic-ray nucleons in the galaxy. Astrophys. J., 1998, 509(1): 212
CrossRef
ADS
Google scholar
|
[75] |
A. W. Strong, I. V. Moskalenko, O. Reimer. Diffuse continuum gamma rays from the galaxy. Astrophys. J., 2000, 537(2): 763
CrossRef
ADS
Google scholar
|
[76] |
C. Evoli, D. Gaggero, D. Grasso, L. Maccione. Cosmic ray nuclei, antiprotons and gamma rays in the galaxy: A new diffusion model. J. Cosmol. Astropart. Phys., 2008, 10: 018
CrossRef
ADS
Google scholar
|
[77] |
C. Evoli, D. Gaggero, A. Vittino.
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |