Galactic cosmic ray propagation: sub-PeV diffuse gamma-ray and neutrino emission

Bing-Qiang Qiao, Wei Liu, Meng-Jie Zhao, Xiao-Jun Bi, Yi-Qing Guo

PDF(4653 KB)
PDF(4653 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (6) : 64501. DOI: 10.1007/s11467-022-1188-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Galactic cosmic ray propagation: sub-PeV diffuse gamma-ray and neutrino emission

Author information +
History +

Abstract

The Tibet ASγ experiment just reported their measurement of sub-PeV diffuse gamma-ray emission from the Galactic disk, with the highest energy up to 957 TeV. These diffuse gamma rays are most likely the hadronic origin by cosmic ray (CR) interaction with interstellar gas in the galaxy. This measurement provides direct evidence to the hypothesis that the Galactic Cosmic Rays (GCRs) can be accelerated beyond PeV energies. In this work, we try to explain the sub-PeV diffuse gamma-ray spectrum with different CR propagation models. We find that there is a tension between the sub-PeV diffuse gamma-ray and the local CR spectrum. To describe the sub-PeV diffuse gamma-ray flux, it generally requires larger local CR flux than measurement in the knee region. We further calculate the PeV neutrino flux from the CR propagation model. Even all of these sub-PeV diffuse gamma rays originate from the propagation, the Galactic Neutrinos (GNs) only account for less than ~15% of observed flux, most of which are still from extragalactic sources.

Graphical abstract

Keywords

galactic cosmic ray / diffuse gamma ray / neutrino

Cite this article

Download citation ▾
Bing-Qiang Qiao, Wei Liu, Meng-Jie Zhao, Xiao-Jun Bi, Yi-Qing Guo. Galactic cosmic ray propagation: sub-PeV diffuse gamma-ray and neutrino emission. Front. Phys., 2022, 17(6): 64501 https://doi.org/10.1007/s11467-022-1188-8

References

[1]
M. Nagano, T. Hara, Y. Hatano, N. Hayashida, S. Kawaguchi, K. Kamata, T. Kifune, Y. Mizumoto. Energy spectrum of primary cosmic rays between 1014.5 and 1018 eV. J. Phys. G Nucl. Phys., 1984, 10(9): 1295
CrossRef ADS Google scholar
[2]
M. A. K. Glasmacher, M. A. Catanese, M. C. Chantell. . The cosmic ray energy spectrum between 1014 and 1016 eV. Astropart. Phys., 1999, 10(4): 291
CrossRef ADS Google scholar
[3]
M. Aglietta, B. Alessandro, P. Antonioli, F. Arneodo, L. Bergamasco. . The cosmic ray primary composition in the “knee” region through the EAS electromagnetic and muon measurements at EAS-TOP. Astropart. Phys., 2004, 21(6): 583
CrossRef ADS Google scholar
[4]
T.AntoniW. D. ApelA.F. BadeaK.BekkA.Bercuci, ., KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems, Astropart. Phys. 24(1–2), 1 (2005)
[5]
M. Amenomori, X. J. Bi, D. Chen, S. W. Cui. . The all-particle spectrum of primary cosmic rays in the wide energy range from 1014 to 1017 eV observed with the Tibet-III air-shower array. Astrophys. J., 2008, 678(2): 1165
CrossRef ADS Google scholar
[6]
K. H. Kampert, M. Unger. Measurements of the cosmic ray composition with air shower experiments. Astropart. Phys., 2012, 35(10): 660
CrossRef ADS Google scholar
[7]
R.AloisioP. BlasiI.De MitriS.Petrera, Selected Topics in Cosmic Ray Physics, page 1, 2018
[8]
W. Baade, F. Zwicky. Cosmic rays from supernovae. Contributions from the Mount Wilson Observatory, 1934, 3: 79
[9]
R. Abbasi, Y. Abdou, T. Abu-Zayyad, M. Ackermann, J. Adams. . Observation of anisotropy in the galactic cosmic-ray arrival directions at 400 TeV with IceCube. Astrophys. J., 2012, 746(1): 33
CrossRef ADS Google scholar
[10]
M. G. Aartsen, K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar. . Anisotropy in cosmic-ray arrival directions in the southern hemisphere based on six years of data from the IceCube detector. Astrophys. J., 2016, 826(2): 220
CrossRef ADS Google scholar
[11]
M. Amenomori, X. J. Bi, D. Chen, T. L. Chen, W. Y. Chen. . Northern sky galactic cosmic ray anisotropy between 10 and 1000 TeV with the Tibet air shower array. Astrophys. J., 2017, 836(2): 153
CrossRef ADS Google scholar
[12]
HESS Collaboration. Acceleration of petaelectronvolt protons in the Galactic Centre. Nature, 2016, 531(7595): 476
CrossRef ADS Google scholar
[13]
TibetASγ CollaborationM.AmenomoriY.W. Bao, ., Potential PeVatron supernova remnant G106.3+2.7 seen in the highest-energy gamma rays, Nat. Astron. (2021)
[14]
A.U. AbeysekaraA.AlbertR.Alfaro, ., HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon, arXiv: 2103.06820 (2021)
[15]
DAMPE Collaboration. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons. Nature, 2017, 552(7683): 63
CrossRef ADS Google scholar
[16]
D. Kerszberg for the H.E.S.S. Collaboration, The cosmic-ray electron spectrum measured with H.E.S.S. 2017
[17]
A. Borione, M. A. Catanese, M. C. Chantell, C. E. Covault, J. W. Cronin, B. E. Fick, L. F. Fortson, J. Fowler, M. A. K. Glasmacher, K. D. Green, D. B. Kieda, J. Matthews, B. J. Newport, D. Nitz, R. A. Ong, S. Oser, D. Sinclair, J. C. van der Velde. Constraints on gamma-ray emission from the galactic plane at 300 TeV. Astrophys. J., 1998, 493(1): 175
CrossRef ADS Google scholar
[18]
W.D. ApelJ. C. Arteaga-VelázquezK.Bekk, ., KASCADE-Grande limits on the isotropic diffuse gamma-ray flux between 100 TeV and 1 EeV, arXiv: 1710.02889 (2017)
[19]
M. Amenomori, Y. W. Bao, X. J. Bi, D. Chen, T. L. Chen. . First detection of sub-PeV diffuse gamma rays from the galactic disk: Evidence for ubiquitous galactic cosmic rays beyond PeV energies. Phys. Rev. Lett., 2021, 126(14): 141101
CrossRef ADS Google scholar
[20]
R.-Y.LiuX.-Y. Wang, Origin of galactic sub-PeV diffuse gamma-ray emission: Constraints from high-energy neutrino observations, arXiv: 2104.05609 (2021)
[21]
V.VecchiottiF.ZuccariniF.L. VillanteG.Pagliaroli, Unresolved sources naturally contribute to PeV γ-ray diffuse emission observed by Tibet ASγ, arXiv: 2107.14584 (2021)
[22]
S. Koldobskiy, A. Neronov, D. Semikoz. Pion decay model of the Tibet-AS γ PeV gamma-ray signal. Phys. Rev. D, 2021, 104(4): 043010
CrossRef ADS Google scholar
[23]
P. Zhang, B. Qiao, Q. Yuan, S. Cui, Y. Guo. Ultrahigh-energy diffuse gamma ray emission from cosmic-ray interactions with the medium surrounding acceleration sources. Phys. Rev. D, 2022, 105(2): 023002
CrossRef ADS Google scholar
[24]
IceCube Collaboration. Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science, 2013, 342(6161): 1242856
CrossRef ADS Google scholar
[25]
M. G. Aartsen, R. Abbasi, Y. Abdou, M. Ackermann, J. Adams. . First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett., 2013, 111(2): 021103
CrossRef ADS Google scholar
[26]
M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers. . Observation of high-energy astrophysical neutrinos in three years of IceCube data. Phys. Rev. Lett., 2014, 113(10): 101101
CrossRef ADS Google scholar
[27]
M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers. . Time-integrated neutrino source searches with 10 years of IceCube data. Phys. Rev. Lett., 2020, 124(5): 051103
CrossRef ADS Google scholar
[28]
M. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers. . Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science, 2018, 361(6398): eaat1378
CrossRef ADS Google scholar
[29]
M. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers. . Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science, 2018, 361(6398): 147
CrossRef ADS Google scholar
[30]
M.G. AartsenK.AbrahamM.Ackermann, ., A combined maximum-likelihood analysis of the high energy astrophysical neutrino flux measured with IceCube, arXiv: 1507.03991 (2015)
[31]
Y. Q. Guo, H. B. Hu, Q. Yuan, Z. Tian, X. J. Gao. Pinpointing the knee of cosmic rays with diffuse PeV γ-rays and neutrinos. Astrophys. J., 2014, 795(1): 100
CrossRef ADS Google scholar
[32]
P. Lipari, S. Vernetto. Diffuse galactic gamma-ray flux at very high energy. Phys. Rev. D, 2018, 98(4): 043003
CrossRef ADS Google scholar
[33]
Q. Yuan, S. J. Lin, K. Fang, X. J. Bi. Propagation of cosmic rays in the AMS-02 era. Phys. Rev. D, 2017, 95(8): 083007
CrossRef ADS Google scholar
[34]
O.AdrianiG. C. BarbarinoG.A. BazilevskayaR.BellottiM.Boezio, ., PAMELA measurements of cosmic-ray proton and helium spectra, Science 332(6025), 69 (2011)
[35]
P.BlasiE. Amato, Diffusive propagation of cosmic rays from supernova remnants in the Galaxy (II): anisotropy, arXiv: 1105.4529 (2011)
[36]
W. Liu, X. J. Bi, S. J. Lin, B. B. Wang, P. F. Yin. Excesses of cosmic ray spectra from a single nearby source. Phys. Rev. D, 2017, 96(2): 023006
CrossRef ADS Google scholar
[37]
N. Tomassetti. Origin of the cosmic-ray spectral hardening. Astrophys. J. Lett., 2012, 752(1): L13
CrossRef ADS Google scholar
[38]
W. Liu, Y.-Q. Guo, Q. Yuan. Indication of nearby source signatures of cosmic rays from energy spectra and anisotropies. J. Cosmol. Astropart. Phys., 2019, 10: 010
CrossRef ADS Google scholar
[39]
B.-Q. Qiao, W. Liu, Y.-Q. Guo, Q. Yuan. Anisotropies of different mass compositions of cosmic rays. J. Cosmol. Astropart. Phys., 2019, 12: 007
[40]
Y. Q. Guo, Q. Yuan. Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse γ rays with spatially-dependent propagation. Phys. Rev. D, 2018, 97(6): 063008
CrossRef ADS Google scholar
[41]
Y. Q. Guo, Z. Tian, C. Jin. Spatial-dependent propagation of cosmic rays results in the spectrum of proton, ratios of P/P, and B/C, and anisotropy of nuclei. ApJ, 2016, 819: 54
CrossRef ADS Google scholar
[42]
W. Liu, Y. Yao, Y. Q. Guo. Revisiting the spatially dependent propagation model with the latest observations of cosmic-ray nuclei. Astrophys. J., 2018, 869(2): 176
CrossRef ADS Google scholar
[43]
P. Blasi, E. Amato, P. D. Serpico. Spectral breaks as a signature of cosmic ray induced turbulence in the galaxy. Phys. Rev. Lett., 2012, 109(6): 061101
CrossRef ADS Google scholar
[44]
E. S. Seo, V. S. Ptuskin. Stochastic reacceleration of cosmic rays in the interstellar medium. Astrophys. J., 1994, 431: 705
CrossRef ADS Google scholar
[45]
G. Case, D. Bhattacharya. Revisiting the galactic supernova remnant distribution. Astron. Astrophys. Suppl. Ser., 1996, 120: 437
[46]
M. Ahlers. Deciphering the dipole anisotropy of galactic cosmic rays. Phys. Rev. Lett., 2016, 117(15): 151103
CrossRef ADS Google scholar
[47]
M. Aguilar, L. Ali Cavasonza, G. Ambrosi, L. Arruda, N. Attig. . Precision measurement of the boron to carbon flux ratio in cosmic rays from 1.9 GV to 2.6 TV with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett., 2016, 117(23): 231102
CrossRef ADS Google scholar
[48]
Y. S. Yoon, T. Anderson, A. Barrau, N. B. Conklin, S. Coutu. . Proton and helium spectra from the CREAM-III flight. Astrophys. J., 2017, 839(1): 5
CrossRef ADS Google scholar
[49]
Q. An, R. Asfandiyarov, P. Azzarello, P. Bernardini, X. J. Bi. . Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite. Sci. Adv., 2019, 5(9): eaax3793
CrossRef ADS Google scholar
[50]
M. Aguilar, D. Aisa, B. Alpat, A. Alvino, G. Ambrosi. . Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett., 2015, 114(17): 171103
CrossRef ADS Google scholar
[51]
M. Aguilar, L. Ali Cavasonza, B. Alpat, G. Ambrosi, L. Arruda. . Observation of the identical rigidity dependence of He, C, and O cosmic rays at high rigidities by the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett., 2017, 119(25): 251101
CrossRef ADS Google scholar
[52]
E. Atkin, V. Bulatov, V. Dorokhov. . First results of the cosmic ray NUCLEON experiment. J. Cosmol. Astropart. Phys., 2017, 07: 020
CrossRef ADS Google scholar
[53]
W.D. ApelJ. C. Arteaga-VelázquezK.Bekk M.BertainaJ. Blümer, ., KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays, Astropart. Phys. 47, 54 (2013)
[54]
M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers. . Cosmic ray spectrum and composition from PeV to EeV using 3 years of data from IceTop and IceCube. Phys. Rev. D, 2019, 100(8): 082002
CrossRef ADS Google scholar
[55]
J. C. Arteaga-Velázquez, HAWC measurements of the energy spectra of cosmic ray protons, helium and heavy nuclei in the TeV range, arXiv: 2108.03208 (2021)
[56]
J. R. Hörandel. On the knee in the energy spectrum of cosmic rays. Astropart. Phys., 2003, 19(2): 193
CrossRef ADS Google scholar
[57]
M. G. Aartsen, R. Abbasi, M. Ackermann, J. Adams, J. A. Aguilar. . Cosmic ray spectrum from 250 TeV to 10 PeV using IceTop. Phys. Rev. D, 2020, 102(12): 122001
CrossRef ADS Google scholar
[58]
R. Alfaro, C. Alvarez, J. D. Álvarez, R. Arceo, J. C. Arteaga-Velázquez. . All particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV. Phys. Rev. D, 2017, 96(12): 122001
CrossRef ADS Google scholar
[59]
G.Di Sciascio, Measurement of the cosmic ray energy spectrum with ARGO-YBJ, arXiv: 1408.6739 (2014)
[60]
A. D. Panov, J. H. Jr Adams, H. S. Ahn, G. L. Bashinzhagyan, J. W. Watts, J. P. Wefel, J. Wu, O. Ganel, T. G. Guzik, V. I. Zatsepin, I. Isbert, K. C. Kim, M. Christl, E. N. Kouznetsov, M. I. Panasyuk, E. S. Seo, N. V. Sokolskaya, J. Chang, W. K. H. Schmidt, A. R. Fazely. Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results. Bull. Russ. Acad. Sci. Phys., 2009, 73(5): 564
CrossRef ADS Google scholar
[61]
E. V. Atkin, V. L. Bulatov, O. A. Vasiliev, A. G. Voronin, N. V. Gorbunov. . Energy spectra of cosmic-ray protons and nuclei measured in the NUCLEON experiment using a new method. Astron. Rep., 2019, 63(1): 66
CrossRef ADS Google scholar
[62]
J.-L. Zhang, X.-J. Bi, H.-B. Hu. Very high energy γ ray absorption by the galactic interstellar radiation field. Astron. Astrophys., 2006, 449(2): 641
CrossRef ADS Google scholar
[63]
I. V. Moskalenko, T. A. Porter, A. W. Strong. Attenuation of very high energy gamma rays by the Milky way interstellar radiation field. Astrophys. J., 2006, 640(2): L155
CrossRef ADS Google scholar
[64]
B. Bartoli, P. Bernardini, X. J. Bi, P. Branchini, A. Budano. . Study of the diffuse gamma-ray emission from the galactic plane with ARGO-YBJ. Astrophys. J., 2015, 806(1): 20
CrossRef ADS Google scholar
[65]
M. D. Kistler, J. F. Beacom. Guaranteed and prospective galactic TeV neutrino sources. Phys. Rev. D, 2006, 74(6): 063007
CrossRef ADS Google scholar
[66]
R.AbbasiM. AckermannJ.Adams, ., The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data, arXiv: 2011.03545 (2020)
[67]
S. Adrián-Martínez, A. Albert, M. André, M. Anghinolfi, G. Anton. . Constraints on the neutrino emission from the galactic ridge with the ANTARES telescope. Phys. Lett. B, 2016, 760: 143
CrossRef ADS Google scholar
[68]
M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers. . Constraints on galactic neutrino emission with seven years of IceCube data. Astrophys. J., 2017, 849(1): 67
CrossRef ADS Google scholar
[69]
F. Aharonian, R. Yang, E. de Oña Wilhelmi. Massive stars as major factories of galactic cosmic rays. Nat. Astron., 2019, 3(6): 561
CrossRef ADS Google scholar
[70]
P. Cristofari. The hunt for pevatrons: The case of supernova remnants. Universe, 2021, 7(9): 324
CrossRef ADS Google scholar
[71]
A. M. Bykov, D. C. Ellison, P. E. Gladilin, S. M. Osipov. Ultrahard spectra of PeV neutrinos from super novae in compact star clusters. Mon. Not. R. Astron. Soc., 2015, 453(1): 113
CrossRef ADS Google scholar
[72]
A. M. Bykov, A. E. Petrov, M. E. Kalyashova, S. V. Troitsky. PeV photon and neutrino flares from galactic gamma-ray binaries. Astrophys. J. Lett., 2021, 921(1): L10
CrossRef ADS Google scholar
[73]
R. Yang, F. Aharonian, C. Evoli. Radial distribution of the diffuse γ-ray emissivity in the galactic disk. Phys. Rev. D, 2016, 93(12): 123007
CrossRef ADS Google scholar
[74]
A. W. Strong, I. V. Moskalenko. Propagation of cosmic-ray nucleons in the galaxy. Astrophys. J., 1998, 509(1): 212
CrossRef ADS Google scholar
[75]
A. W. Strong, I. V. Moskalenko, O. Reimer. Diffuse continuum gamma rays from the galaxy. Astrophys. J., 2000, 537(2): 763
CrossRef ADS Google scholar
[76]
C. Evoli, D. Gaggero, D. Grasso, L. Maccione. Cosmic ray nuclei, antiprotons and gamma rays in the galaxy: A new diffusion model. J. Cosmol. Astropart. Phys., 2008, 10: 018
CrossRef ADS Google scholar
[77]
C. Evoli, D. Gaggero, A. Vittino. . Cosmic-ray propagation with DRAGON2 (I): Numerical solver and as trophysical ingredients. J. Cosmol. Astropart. Phys., 2017, 02: 015
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0400200), the National Natural Science Foundation of China (Nos. U1738209, 11875264, 11635011, and U2031110). Software: GALPROP ([74, 75]) available at https://galprop.stanford.edu. DRAGON ([76, 77]) available at https://github.com/cosmicrays.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(4653 KB)

Accesses

Citations

Detail

Sections
Recommended

/