Digital coding transmissive metasurface for multi-OAM-beam

Si Jia Li, Zhuo Yue Li, Guo Shai Huang, Xiao Bin Liu, Rui Qi Li, Xiang Yu Cao

PDF(15789 KB)
PDF(15789 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (6) : 62501. DOI: 10.1007/s11467-022-1179-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Digital coding transmissive metasurface for multi-OAM-beam

Author information +
History +

Abstract

Orbital angular momentum (OAM) is a phenomenon of vortex phase distribution in free space, which has attracted enormous attention in theoretical research and practical application of wireless communication systems due to its characteristic of infinitely orthogonal modes. However, traditional methods generating OAM beams are bound to complex structure, large device, multiple layers, complex feed networks, and limited beams in microwave range. Here, a digital coding transmissive metasurface (DCTMS) with a single layer substrate and the bi-symmetrical arrow is proposed and designed to generate multi-OAM-beam based on Pancharatnam−Berry (PB) phase principle. The 3-bit phase response can be realized by encoding the geometric phase into rotation angle of unit cell for DCTMS. Additionally, the phase compensation of the metasurface is introduced to achieve the beam focusing and the conversion from spherical wave to plane wave. According to the digital convolution theorem, the far-field patterns and near-field distributions of multi-OAM-beam withl= −2 modes are adequately demonstrated by DCTMS prototypes. The OAM efficiency and the purity are calculated to demonstrate the excellent multi-OAM-beam. The simulated and experimental results illustrate their performance of OAM beams. The designed DCTMS has profound application in multi-platform wireless communication systems and the multi-channel imaging systems.

Graphical abstract

Keywords

transmissive metasurface / orbital angular momentum / Pancharatnam−Berry phase / multi-beam / phase compensation

Cite this article

Download citation ▾
Si Jia Li, Zhuo Yue Li, Guo Shai Huang, Xiao Bin Liu, Rui Qi Li, Xiang Yu Cao. Digital coding transmissive metasurface for multi-OAM-beam. Front. Phys., 2022, 17(6): 62501 https://doi.org/10.1007/s11467-022-1179-9

References

[1]
P. Zheng , Q. Dai , Z. Li , Z. Ye , J. Xiong , H. Liu , G. Zheng , S. Zhang . Metasurface-based key for computational imaging encryption. Sci. Adv., 2021, 7( 21): eabg0363
CrossRef ADS Google scholar
[2]
X. Fang , H. Ren , M. Gu . Orbital angular momentum holography for high-security encryption. Nat. Photonics, 2020, 14( 2): 102
CrossRef ADS Google scholar
[3]
H. Sroor , Y. Huang , B. Sephton , D. Naidoo , A. Valles , V. Ginis , C. Qiu , A. Ambrosio , F. Capasso , A. Forbes , Capasso Feder. , Forbes A. . High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics, 2020, 14( 8): 498
CrossRef ADS Google scholar
[4]
S. Li , Z. Li , B. Han , G. Huang , X. Liu , H. Yang , X. Cao . Multifunctional Coding Metasurface with Left and Right Circularly Polarized and Multiple Beams. Front. Mater., 2022, 9 : 854062
CrossRef ADS Google scholar
[5]
P. Feng S. Qu S. Yang, OAM-generating transmitarray antenna with circular phased array antenna feed, IEEE Trans. Antenn. Propag. 68(6), 4540 ( 2020)
[6]
Q. Zhou , M. Liu , W. Zhu , L. Chen , Y. Ren , H. Lezec , T. Xu . Generation of perfect vortex beams by dielectric geometric metasurface for visible light. Laser Photonics Rev., 2021, 15( 12): 2100390
CrossRef ADS Google scholar
[7]
J. Wang , S. Chen , J. Liu . Orbital angular momentum communications based on standard multi-mode fiber. APL Photonics, 2021, 6( 6): 060804
CrossRef ADS Google scholar
[8]
Q. Xiao , Q. Ma , T. Yan , L. W. Wu , C. Liu , Z. X. Wang , X. Wan , Q. Cheng , T. J. Cui . Orbital−angular−momentum-encrypted holography based on coding information metasurface. Adv. Opt. Mater., 2021, 9( 11): 2002155
CrossRef ADS Google scholar
[9]
W. Chen A. Zhu J. Sisler Z. Bharwani F. Capasso, A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures, Nat. Commun. 10(1), 1 ( 2019)
[10]
K. Ou , F. Yu , G. Li , W. Wang , A. E. Miroshnichenko , W. Lu . Mid-infrared polarization-controlled broadband achromatic metadevice. Sci. Adv., 2020, 6( 37): eabc0711
CrossRef ADS Google scholar
[11]
S. Li , Y. Li , L. Zhang , Z. Luo , B. Han , R. Li , X. Cao , Q. Cheng , T. Cui . Programmable controls to scattering properties of a radiation array. Laser Photonics Rev., 2021, 15( 2): 2000449
CrossRef ADS Google scholar
[12]
S. J. Li , B. W. Han , Z. Y. Li , X. B. Liu , G. S. Huang , R. Q. Li , X. Y. Cao . Transmissive coding metasurface with dual-circularly polarized multi-beam. Opt. Express, 2022, 30( 15): 26362
CrossRef ADS Google scholar
[13]
S. Li , T. Cui , Y. Li , C. Zhang , R. Li , X. Cao , Z. Guo . Multifunctional and multiband fractal metasurface based on inter‐metamolecular coupling interaction. Adv. Theory Simul., 2019, 2( 8): 1900105
CrossRef ADS Google scholar
[14]
Y. Tanaka , P. Albella , M. Rahmani , V. Giannini , S. A. Maier , T. Shimura . Plasmonic linear nanomotor using lateral optical forces. Sci. Adv., 2020, 6( 45): eabc3726
CrossRef ADS Google scholar
[15]
B. Han , S. Li , Z. Li , G. Huang , J. Tian , X. Cao . Asymmetric transmission for dual-circularly and linearly polarized waves based on a chiral metasurface. Opt. Express, 2021, 29( 13): 19643
CrossRef ADS Google scholar
[16]
Z. Li , W. Liu , H. Cheng , D. Y. Choi , S. Chen , J. Tian . Spin‐selective full‐dimensional manipulation of optical waves with chiral mirror. Adv. Mater., 2020, 32( 26): 1907983
CrossRef ADS Google scholar
[17]
Q. Song , S. Khadir , S. Vézian , B. Damilano , P. D. Mierry , S. Chenot , P. Genevet . Bandwidth-unlimited polarization-maintaining metasurfaces. Sci. Adv., 2021, 7( 5): eabe1112
CrossRef ADS Google scholar
[18]
A. Dorrah , N. Rubin , A. Zai , M. Tamagnone , F. Capasso . Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics, 2021, 15( 4): 287
CrossRef ADS Google scholar
[19]
S. Li , Y. Li , H. Li , Z. Wang , C. Zhang , Z. Guo , R. Li , X. Cao , T. Cui . A thin self‐feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously. Ann. Phys., 2020, 532( 5): 2000020
CrossRef ADS Google scholar
[20]
H. Lv , Q. Huang , X. Yi , J. Hou , X. Shi . Low-profile transmitting metasurface using single dielectric substrate for OAM generation. IEEE Antennas Wirel. Propag. Lett., 2020, 19( 5): 881
CrossRef ADS Google scholar
[21]
Z. Zhang , Y. Zhang , T. Wu , S. Chen , W. Li , J. Guan . Broadband RCS reduction by a quaternionic metasurface. Materials (Basel), 2021, 14( 11): 2787
CrossRef ADS Google scholar
[22]
F. Arute , K. Arya , R. Babbush , D. Bacon , J. C. Bardin , R. Barends , J. M. Martinis . Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574( 7779): 505
CrossRef ADS Google scholar
[23]
A. Leitis , A. Heßler , S. Wahl , M. Wuttig , T. Taubner , A. Tittl , H. Altug . All‐dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater., 2020, 30( 19): 1910259
CrossRef ADS Google scholar
[24]
X. Zhang , W. Jiang , H. Jiang , Q. Wang , H. Tian , L. Bai , T. Cui . An optically driven digital metasurface for programming electromagnetic functions. Nat. Electron., 2020, 3( 3): 165
CrossRef ADS Google scholar
[25]
J. Zhao , X. Yang , J. Dai , Q. Cheng , X. Li , N. Qi , T. Cui . Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl. Sci. Rev., 2019, 6( 2): 231
CrossRef ADS Google scholar
[26]
L. Zhang , Z. Wang , R. Shao , J. Shen , X. Chen , X. Wan , T. Cui . Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface. IEEE Trans. Antenn. Propag., 2020, 68( 4): 2984
CrossRef ADS Google scholar
[27]
P. Xu , W. Jiang , X. Cai , S. Bai , T. Cui . An integrated coding-metasurface-based array antenna. IEEE Trans. Antenn. Propag., 2020, 68( 2): 891
CrossRef ADS Google scholar
[28]
H. Li , Y. Li , J. Shen , T. Cui . Low‐profile electromagnetic holography by using coding Fabry–Perot type metasurface with in‐plane feeding. Adv. Opt. Mater., 2020, 8( 9): 1902057
CrossRef ADS Google scholar
[29]
Z. Li , S. Li , B. Han , G. Huang , Z. Guo , X. Cao . Quad‐band transmissive metasurface with linear to dual‐circular polarization conversion simultaneously. Adv. Theory Simul., 2021, 4( 8): 2100117
CrossRef ADS Google scholar
[30]
M. Tal , D. B. Haim , T. Ellenbogen . Geometric phase opens new frontiers in nonlinear frequency conversion of light. Front. Phys., 2022, 17( 1): 12302
CrossRef ADS Google scholar
[31]
A. Karnieli , Y. Li , A. Arie . The geometric phase in nonlinear frequency conversionn. Front. Phys., 2022, 17( 1): 12301
CrossRef ADS Google scholar
[32]
Y. Tian , X. Jing , H. Gan , C. Li , Z. Hong . Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces. Front. Phys., 2020, 15( 6): 62502
CrossRef ADS Google scholar
[33]
H. Ahmed , H. Kim , Y. Zhang , Y. Intaravanne , J. Jang , J. Rho , S. Chen , X. Chen . Optical metasurfaces for generating and manipulating optical vortex beams. Nanophotonics, 2022, 11( 5): 941
CrossRef ADS Google scholar
[34]
Y. Bai , H. Lv , X. Fu , Y. Yang . Vortex beam: generation and detection of orbital angular momentum. Chin. Opt. Lett., 2022, 20( 1): 012601
CrossRef ADS Google scholar
[35]
S. Yu , L. Li , G. Shi , C. Zhu , Y. Shi . Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl. Phys. Lett., 2016, 108( 24): 241901
CrossRef ADS Google scholar
[36]
F. Yue , D. Wen , C. Zhang , B. D. Gerardot , W. Wang , S. Zhang , X. Chen . Multichannel polarization‐controllable superpositions of orbital angular momentum states. Adv. Mater., 2017, 29( 15): 1603838
CrossRef ADS Google scholar
[37]
L. Zhang , S. Liu , L. Li , T. Cui . Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam−Berry coding metasurfaces. ACS Appl. Mater. Interfaces, 2017, 9( 14): 36447
CrossRef ADS Google scholar
[38]
X. Bai , F. Zhang , L. Sun , A. Cao , C. He , J. Zhang , W. Zhu . Dynamic millimeter-wave OAM beam generation through programmable metasurface. Nanophotonics, 2022, 11( 7): 1389
CrossRef ADS Google scholar
[39]
Y. Wang , K. Zhang , Y. Yuan , X. Ding , B. Ratni , S. N. Burokur , Q. Wu . Planar vortex beam generator for circularly polarized incidence based on FSS. IEEE Trans. Antenn. Propag., 2020, 68( 3): 2938666
CrossRef ADS Google scholar
[40]
X. Bai , F. Kong , Y. Sun , G. Wang , J. Qian , X. Li , A. Cao , C. He , X. Liang , R. Jin , W. Zhu . High‐efficiency transmissive programmable metasurface for multimode OAM generation. Adv. Opt. Mater., 2020, 8( 17): 2000570
CrossRef ADS Google scholar
[41]
H. Zhao , B. Quan , X. Wang , C. Gu , J. Li , Y. Zhang . Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band. ACS Photonics, 2018, 5( 5): 1726
CrossRef ADS Google scholar
[42]
Y. Yuan , K. Zhang , B. Ratni , Q. Song , X. Ding , Q. Wu , P. Genevet . Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nat. Commun., 2020, 11( 1): 1
CrossRef ADS Google scholar
[43]
K. Zhang , Y. Yuan , X. Ding , H. Li , B. Ratni , Q. Wu , J. Tan . Polarization‐engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing. Laser Photonics Rev., 2020, 15( 1): 2000351
CrossRef ADS Google scholar
[44]
G. Ding , K. Chen , N. Zhang , J. Zhao , T. Jiang , Y. Feng . Independent wavefront tailoring in full polarization channels by helicity-decoupled metasurface. Ann. Phys., 2022, 534( 4): 2100546
CrossRef ADS Google scholar
[45]
Y. Pan , F. Lan , Y. Zhang , H. Zeng , L. Wang , T. Song , Z. Yang . Dual-band multifunctional coding metasurface with a mingled anisotropic aperture for polarized manipulation in full space. Photon. Res., 2022, 10( 2): 416
CrossRef ADS Google scholar

Electronic supplementary materials

are available in the online version of this article at https://doi.org/10.1007/s11467-022-1179-9 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1179-9 and are accessible for authorized users.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62171460 and 61801508), the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2020JM-350, 20200108, and 20210110), the Young Innovation Team at Colleges of Shaanxi Province, China (Grant No. 2020022), the Postdoctoral Innovative Talents Support Program of China (Grant No. BX20180375), China Postdoctoral Science Foundation (Grant Nos. 2021T140111, 2019M650098, and 2019M653960), and the Postdoctoral Research Funding of Jiangsu Province (No. 2019K219).

Author contribution

All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Conflict of interest statement

The authors declare no conflicts of interest regarding this article.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(15789 KB)

Accesses

Citations

Detail

Sections
Recommended

/