Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties
Rui Yang, Jianuo Fan, Mengtao Sun
Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties
Transition metal dichalcogenides (TMDCs) have suitable and adjustable band gaps, high carrier mobility and yield. Layered TMDCs have attracted great attention due to the structure diversity, stable existence in normal temperature environment and the band gap corresponding to wavelength between infrared and visible region. The ultra-thin, flat, almost defect-free surface, excellent mechanical flexibility and chemical stability provide convenient conditions for the construction of different types of TMDCs heterojunctions. The optoelectric properties of heterojunctions based on TMDCs materials are summarized in this review. Special electronic band structures of TMDCs heterojunctions lead to excellent optoelectric properties. The emitter, p-n diodes, photodetectors and photosensitive devices based on TMDCs heterojunction materials show excellent performance. These devices provide a prototype for the design and development of future high-performance optoelectric devices.
transition metal dichalcogenides (TMDCs) / heterostructures / optoelectric properties
[1] |
K.S. Novoselov, A.K. Geim, S.V. Morozov, D.E. Jiang, Y.Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carbon films. Science , 2004, 306( 5696): 666
CrossRef
ADS
Google scholar
|
[2] |
Y.Y. Li, B.Gao, Y.Han, B.K. Chen, J.Y. Huo. Optoelectronic characteristics and application of black phosphorus and its analogs. Front. Phys. , 2021, 16( 4): 44301
CrossRef
ADS
Google scholar
|
[3] |
L.Li, Y.Yu, G.J. Ye, Q.Ge, X.Ou, H.Wu, D.Feng, X.H. Chen, Y.Zhang. Black phosphorus field-effect transistors. Nat. Nanotechnol. , 2014, 9( 5): 372
CrossRef
ADS
Google scholar
|
[4] |
L.Britnell, R.M. Ribeiro, A.Eckmann, R.Jalil, B.D. Belle, A.Mishchenko, Y.J. Kim, R.V. Gorbachev, T.Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C.Casiraghi, A.H. C. Neto, K.S. Novoselov. Strong light−matter interactions in heterostructures of atomically thin films. Science , 2013, 340( 6138): 1311
CrossRef
ADS
Google scholar
|
[5] |
Z.Q. Wang, T.Y. Lü, H.Q. Wang, Y.P. Feng, J.C. Zheng. Review of borophene and its potential applications. Front. Phys. , 2019, 14( 3): 33403
CrossRef
ADS
Google scholar
|
[6] |
A.J. Mannix, X.F. Zhou, B.Kiraly, J.D. Wood, D.Alducin, B.D. Myers, X.Liu, B.L. Fisher, U.Santiago, J.R. Guest, M.J. Yacaman, A.Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science , 2015, 350( 6267): 1513
CrossRef
ADS
Google scholar
|
[7] |
K.S. Novoselov, D.V. Andreeva, W.Ren, G.Shan. Graphene and other two-dimensional materials. Front. Phys. , 2019, 14( 1): 13301
CrossRef
ADS
Google scholar
|
[8] |
G.H. Han D.L. Duong D. H. Keum S.J. Yun Y.H. Lee, van der Waals metallic transition metal dichalcogenides, Chem. Rev. 118(13), 6297 ( 2018)
|
[9] |
A.U. Liyanage, M.M. Lerner. Use of amine electride chemistry to prepare molybdenum disulfide intercalation compounds. RSC Adv. , 2014, 4( 87): 47121
CrossRef
ADS
Google scholar
|
[10] |
M.Chhowalla, H.S. Shin, G.Eda, L.J. Li, K.P. Loh, H.Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. , 2013, 5( 4): 263
CrossRef
ADS
Google scholar
|
[11] |
Q.Zhao, Y.Guo, Y.Zhou, X.Xu, Z.Ren, J.Bai, X.Xu, Flexibleproperties of monolayer MX2 (M = Tc , anisotropic X = S . Se). J. Phys. Chem. C , 2017, 121( 42): 23744
CrossRef
ADS
Google scholar
|
[12] |
M.Abdulsalam D.P. Joubert, Optical spectrum and excitons in bulk and monolayer MX2 (M = Zr, Hf; X = S, Se) , Phys. Status Solidi B 253(4), 705 ( 2016) (b)
|
[13] |
B.Radisavljevic, A.Radenovic, J.Brivio, V.Giacometti, A.Kis. Single-layer MoS2 transistors. Nat. Nanotechnol. , 2011, 6( 3): 147
CrossRef
ADS
Google scholar
|
[14] |
O.Lopez-Sanchez, D.Lembke, M.Kayci, A.Radenovic, A.Kis. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. , 2013, 8( 7): 497
CrossRef
ADS
Google scholar
|
[15] |
H.Zeng, J.Dai, W.Yao, D.Xiao, X.Cui. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. , 2012, 7( 8): 490
CrossRef
ADS
Google scholar
|
[16] |
W.Zhang, C.P. Chuu, J.K. Huang, C.H. Chen, M.L. Tsai, Y.H. Chang, C.T. Liang, Y.Z. Chen, Y.L. Chueh, J.H. He, M.Y. Chou, L.J. Li. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. , 2015, 4( 1): 3826
CrossRef
ADS
Google scholar
|
[17] |
C.Cong, J.Shang, X.Wu, B.Cao, N.Peimyoo, C.Qiu, L.Sun, T.Yu. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. , 2014, 2( 2): 131
CrossRef
ADS
Google scholar
|
[18] |
T.LaMountain, E.J. Lenferink, Y.J. Chen, T.K. Stanev, N.P. Stern. Environmental engineering of transition metal dichalcogenide optoelectronics. Front. Phys. , 2018, 13( 4): 138114
CrossRef
ADS
Google scholar
|
[19] |
Y.Liu, Y.Zhou, H.Zhang, F.Ran, W.Zhao, L.Wang, C.Pei, J.Zhang, X.Huang, H.Li. Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy. Front. Phys. , 2019, 14( 1): 13607
CrossRef
ADS
Google scholar
|
[20] |
H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T.Nam, H.Kim, J.H. Kim, S.Ryu, S.Im. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. , 2012, 12( 7): 3695
CrossRef
ADS
Google scholar
|
[21] |
M.M. Furchi, A.Pospischil, F.Libisch, J.Burgdörfer, T.Mueller. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. , 2014, 14( 8): 4785
CrossRef
ADS
Google scholar
|
[22] |
G.Du, Z.Guo, S.Wang, R.Zeng, Z.Chen, H.Liu. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. , 2010, 46( 7): 1106
CrossRef
ADS
Google scholar
|
[23] |
M.Benameur, B.Radisavljevic, J.Héron, S.Sahoo, H.Berger, A.Kis. Visibility of dichalcogenide nanolayers. Nanotechnology , 2011, 22( 12): 125706
CrossRef
ADS
Google scholar
|
[24] |
Q.Ji, Y.Zhang, J.Shi, J.Sun, Y.Zhang, Z.Liu. Morphological Engineering of CVD-grown transition metal dichalcogenides for efficient electrochemical hydrogen evolution. Adv. Mater. , 2016, 28( 29): 6207
CrossRef
ADS
Google scholar
|
[25] |
S.Imani Yengejeh, W.Wen, Y.Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures. Front. Phys. , 2021, 16( 1): 13502
CrossRef
ADS
Google scholar
|
[26] |
X.Hong, J.Kim, S.F. Shi, Y.Zhang, C.Jin, Y.Sun, S.Tongay, J.Wu, Y.Zhang, F.Wang. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. , 2014, 9( 9): 682
CrossRef
ADS
Google scholar
|
[27] |
M.L. Tsai, S.H. Su, J.K. Chang, D.S. Tsai, C.H. Chen, C.I. Wu, L.J. Li, L.J. Chen, J.H. He. Monolayer MoS2 heterojunction solar cells. ACS Nano , 2014, 8( 8): 8317
CrossRef
ADS
Google scholar
|
[28] |
A.K. Geim, I.V. Grigorieva. Van der Waals heterostructures. Nature , 2013, 499( 7459): 419
CrossRef
ADS
Google scholar
|
[29] |
Y.Y. Wang, F.P. Li, W.Wei, B.B. Huang, Y.Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys. , 2021, 16( 1): 13501
CrossRef
ADS
Google scholar
|
[30] |
V.O. Özçelik, J.G. Azadani, C.Yang, S.J. Koester, T.Low. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B , 2016, 94( 3): 035125
CrossRef
ADS
Google scholar
|
[31] |
Z.Zhou, S.Yuan, J.Wang. Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures. Front. Phys. , 2021, 16( 4): 43203
CrossRef
ADS
Google scholar
|
[32] |
D.Wijethunge, L.Zhang, C.Tang, A.Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys. , 2020, 15( 6): 63504
CrossRef
ADS
Google scholar
|
[33] |
T.Wang, A.Dong, X.Zhang, R.K. Hocking, C.Sun. Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction. Front. Phys. , 2022, 17( 2): 23501
CrossRef
ADS
Google scholar
|
[34] |
C.K. Kanade, H.Seok, V.K. Kanade, K.Aydin, H.U. Kim, S.B. Mitta, W.J. Yoo, T.Kim. Low-temperature and large-scale production of a transition metal sulfide vertical heterostructure and its application for photodetectors. ACS Appl. Mater. Interfaces , 2021, 13( 7): 8710
CrossRef
ADS
Google scholar
|
[35] |
J.I. J. Wang, Y.Yang, Y.A. Chen, K.Watanabe, T.Taniguchi, H.O. Churchill, P.Jarillo-Herrero. Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN. Nano Lett. , 2015, 15( 3): 1898
CrossRef
ADS
Google scholar
|
[36] |
K.Chen, X.Wan, J.Wen, W.Xie, Z.Kang, X.Zeng, H.Chen, J.B. Xu. Electronic properties of MoS2–WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano , 2015, 9( 10): 9868
CrossRef
ADS
Google scholar
|
[37] |
L.Dou, Y.M. Yang, J.You, Z.Hong, W.H. Chang, G.Li, Y.Yang. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. , 2014, 5( 1): 5404
CrossRef
ADS
Google scholar
|
[38] |
Z.Yang, Y.Deng, X.Zhang, S.Wang, H.Chen, S.Yang, J.Khurgin, N.X. Fang, X.Zhang, R.Ma. High-performance single-crystalline perovskite thin-film photodetector. Adv. Mater. , 2018, 30( 8): 1704333
CrossRef
ADS
Google scholar
|
[39] |
F.Withers, O.Del Pozo-Zamudio, A.Mishchenko, A.P. Rooney, A.Gholinia, K.Watanabe, T.Taniguchi, S.J. Haigh, A.K. Geim, A.I. Tartakovskii, K.S. Novoselov. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. , 2015, 14( 3): 301
CrossRef
ADS
Google scholar
|
[40] |
T.Georgiou, R.Jalil, B.D. Belle, L.Britnell, R.V. Gorbachev, S.V. Morozov, Y.J. Kim, A.Gholinia, S.J. Haigh, O.Makarovsky, L.Eaves, L.A. Ponomarenko, A.K. Geim, K.S. Novoselov, A.Mishchenko. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. , 2013, 8( 2): 100
CrossRef
ADS
Google scholar
|
[41] |
R.Cheng, D.Li, H.Zhou, C.Wang, A.Yin, S.Jiang, Y.Liu, Y.Chen, Y.Huang, X.Duan. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. , 2014, 14( 10): 5590
CrossRef
ADS
Google scholar
|
[42] |
D.Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano , 2014, 8( 2): 1102
CrossRef
ADS
Google scholar
|
[43] |
G.Eda, H.Yamaguchi, D.Voiry, T.Fujita, M.Chen, M.Chhowalla. Photoluminescence from chemically exfoliated MoS2. Nano Lett. , 2011, 11( 12): 5111
CrossRef
ADS
Google scholar
|
[44] |
Y.Ma, Y.Dai, M.Guo, C.Niu, B.Huang. Graphene adhesion on MoS2 monolayer: An ab initio study. Nanoscale , 2011, 3( 9): 3883
CrossRef
ADS
Google scholar
|
[45] |
Z.Huang, C.He, X.Qi, H.Yang, W.Liu, X.Wei, X.Peng, J.Zhong. Band structure engineering of monolayer MoS2 on h-BN: First-principles calculations. J. Phys. D Appl. Phys. , 2014, 47( 7): 075301
CrossRef
ADS
Google scholar
|
[46] |
Z.Huang, X.Qi, H.Yang, C.He, X.Wei, X.Peng, J.Zhong. Band-gap engineering of the h-BN/MoS2/h-BN sandwich heterostructure under an external electric field. J. Phys. D Appl. Phys. , 2015, 48( 20): 205302
CrossRef
ADS
Google scholar
|
[47] |
W.Yu, S.Li, Y.Zhang, W.Ma, T.Sun, J.Yuan, K.Fu, Q.Bao. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small , 2017, 13( 24): 1700268
CrossRef
ADS
Google scholar
|
[48] |
X.Zhao, T.Huang, P.S. Ping, X.Wu, P.Huang, J.Pan, Y.Wu, Z.Cheng. Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors (Basel) , 2018, 18( 7): 2056
CrossRef
ADS
Google scholar
|
[49] |
Q.Lv, R.Lv. Two-dimensional heterostructures based on graphene and transition metal dichalcogenides: synthesis, transfer and applications. Carbon , 2019, 145 : 240
CrossRef
ADS
Google scholar
|
[50] |
S.Nakamura, M.Senoh, N.Iwasa, S.N. S. i. Nagahama. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn. J. Appl. Phys. , 1995, 34 : L797
CrossRef
ADS
Google scholar
|
[51] |
Q.A. Vu, W.J. Yu. Electronics and optoelectronics based on two-dimensional materials. J. Korean Phys. Soc. , 2018, 73( 1): 1
CrossRef
ADS
Google scholar
|
[52] |
S.O. Koswatta, S.J. Koester, W.Haensch. On the possibility of obtaining MOSFET-like performance and sub-60-mV/dec swing in 1-D broken-gap tunnel transistors. IEEE Trans. Electron Dev. , 2010, 57( 12): 3222
CrossRef
ADS
Google scholar
|
[53] |
Y.Zhang, W.Ma, Y.Cao, J.Huang, Y.Wei, K.Cui, J.Shao. Long wavelength infrared InAs/GaSb superlattice photodetectors with InSb-like and mixed interfaces. IEEE J. Quantum Electron. , 2011, 47( 12): 1475
CrossRef
ADS
Google scholar
|
[54] |
Q.Zhao, Y.Guo, K.Si, Z.Ren, J.Bai, X.Xu, Elastic properties of bulk, electronic ZrS2. HfSe2 from van der Waals density-functional theory. physica status solidi (b) , 2017, 254 : 1700033
CrossRef
ADS
Google scholar
|
[55] |
Q.Zhao, Y.Guo, Y.Zhou, Z.Yao, Z.Ren, J.Bai, X.Xu, Bandalignments, heterostructuresof monolayer transition metal trichalcogenides MX3 (M= Zr, Hf; X= S, Se)MX2(M= Tc, dichalcogenides X= S. Se) for solar applications. Nanoscale , 2018, 10( 7): 3547
CrossRef
ADS
Google scholar
|
[56] |
X.Mu, M.Sun. Interfacial charge transfer exciton enhanced by plasmon in 2D in-plane lateral and van der Waals heterostructures. Appl. Phys. Lett. , 2020, 117( 9): 091601
CrossRef
ADS
Google scholar
|
[57] |
J.Fan, J.Song, Y.Cheng, M.Sun. Pressure-dependent interfacial charge transfer excitons in WSe2−MoSe2 heterostructures in near infrared region. Results Phys. , 2021, 24 : 104110
CrossRef
ADS
Google scholar
|
[58] |
X.H. Li, Y.X. Guo, Y.Ren, J.J. Peng, J.S. Liu, C.Wang, H.Zhang. Narrow-bandgap materials for optoelectronics applications. Front. Phys. , 2022, 17( 1): 13304
CrossRef
ADS
Google scholar
|
[59] |
Z.Z. Yan, Z.H. Jiang, J.P. Lu, Z.H. Ni. Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys. , 2018, 13( 4): 138115
CrossRef
ADS
Google scholar
|
[60] |
N.Zhang, J.Wu, T.Yu, J.Lv, H.Liu, X.Xu. Theory, preparation, properties and catalysis application in 2D graphynes-based materials. Front. Phys. , 2021, 16( 2): 23201
CrossRef
ADS
Google scholar
|
[61] |
C.Lan, C.Li, S.Wang, T.He, Z.Zhou, D.Wei, H.Guo, H.Yang, Y.Liu. Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures. J. Mater. Chem. C , 2017, 5( 6): 1494
CrossRef
ADS
Google scholar
|
[62] |
B.Kang, Y.Kim, W.J. Yoo, C.Lee. Ultrahigh photoresponsive device based on ReS2/graphene heterostructure. Small , 2018, 14( 45): 1802593
CrossRef
ADS
Google scholar
|
[63] |
H.Xu, J.Wu, Q.Feng, N.Mao, C.Wang, J.Zhang. High responsivity and gate tunable grapheme-MoS2 hybrid phototransistor. Small , 2014, 10( 11): 2300
CrossRef
ADS
Google scholar
|
[64] |
X.Song, X.Liu, D.Yu, C.Huo, J.Ji, X.Li, S.Zhang, Y.Zou, G.Zhu, Y.Wang, M.Wu, A.Xie, H.Zeng. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces , 2018, 10( 3): 2801
CrossRef
ADS
Google scholar
|
[65] |
C.Huo, X.Liu, Z.Wang, X.Song, H.Zeng. High-performance low-voltage-driven phototransistors through CsPbBr3–2D crystal van der Waals heterojunctions. Adv. Opt. Mater. , 2018, 6( 16): 1800152
CrossRef
ADS
Google scholar
|
[66] |
S.D. Stranks, H.J. Snaith. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. , 2015, 10( 5): 391
CrossRef
ADS
Google scholar
|
[67] |
H.S. Jung, N.G. Park. Perovskite solar cells: From materials to devices. Small , 2015, 11( 1): 10
CrossRef
ADS
Google scholar
|
[68] |
G.Xing, N.Mathews, S.S. Lim, N.Yantara, X.Liu, D.Sabba, M.Grätzel, S.Mhaisalkar, T.C. Sum. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. , 2014, 13( 5): 476
CrossRef
ADS
Google scholar
|
[69] |
H.Kim, L.Zhao, J.S. Price, A.J. Grede, K.Roh, A.N. Brigeman, M.Lopez, B.P. Rand, N.C. Giebink. Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun. , 2018, 9( 1): 4893
CrossRef
ADS
Google scholar
|
[70] |
S.Kumar, J.Jagielski, N.Kallikounis, Y.H. Kim, C.Wolf, F.Jenny, T.Tian, C.J. Hofer, Y.C. Chiu, W.J. Stark, T.W. Lee, C.J. Shih. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: Achieving recommendation 2020 color coordinates. Nano Lett. , 2017, 17( 9): 5277
CrossRef
ADS
Google scholar
|
[71] |
U.Erkılıç, P.Solís-Fernández, H.G. Ji, K.Shinokita, Y.C. Lin, M.Maruyama, K.Suenaga, S.Okada, K.Matsuda, H.Ago. Vapor phase selective growth of two-dimensional perovskite/WS2 heterostructures for optoelectronic applications. ACS Appl. Mater. Interfaces , 2019, 11( 43): 40503
CrossRef
ADS
Google scholar
|
[72] |
C.Palacios-Berraquero, D.M. Kara, A.R. P. Montblanch, M.Barbone, P.Latawiec, D.Yoon, A.K. Ott, M.Loncar, A.C. Ferrari, M.Atatüre. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. , 2017, 8( 1): 15093
CrossRef
ADS
Google scholar
|
[73] |
G.D. Shepard, O.Ajayi, X.Li, X.-Y.Zhu, J.Hone, S.Strauf. Nanobubble induced formation of quantum emitters in monolayer semiconductors. 2D Mater. , 2017, 4 : 021019
CrossRef
ADS
Google scholar
|
[74] |
F.Peyskens, C.Chakraborty, M.Muneeb, D.Van Thourhout, D.Englund. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. , 2019, 10( 1): 4435
CrossRef
ADS
Google scholar
|
[75] |
M.Blauth, M.Jürgensen, G.Vest, O.Hartwig, M.Prechtl, J.Cerne, J.J. Finley, M.Kaniber. Coupling single photons from discrete quantum emitters in WSe2 to lithographically defined plasmonic slot waveguides. Nano Lett. , 2018, 18( 11): 6812
CrossRef
ADS
Google scholar
|
[76] |
Y.Luo, G.D. Shepard, J.V. Ardelean, D.A. Rhodes, B.Kim, K.Barmak, J.C. Hone, S.Strauf. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. , 2018, 13( 12): 1137
CrossRef
ADS
Google scholar
|
[77] |
F.Withers, O.Del Pozo-Zamudio, S.Schwarz, S.Dufferwiel, P.Walker, T.Godde, A.Rooney, A.Gholinia, C.Woods, P.Blake, S.J. Haigh, K.Watanabe, T.Taniguchi, I.L. Aleiner, A.K. Geim, V.I. Fal’ko, A.I. Tartakovskii, K.S. Novoselov. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett. , 2015, 15( 12): 8223
CrossRef
ADS
Google scholar
|
[78] |
J.P. So, H.R. Kim, H.Baek, K.Y. Jeong, H.C. Lee, W.Huh, Y.S. Kim, K.Watanabe, T.Taniguchi, J.Kim, C.H. Lee, H.G. Park. Electrically driven strain-induced deterministic single-photon emitters in a van der Waals heterostructure. Sci. Adv. , 2021, 7( 43): eabj3176
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |