Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties

Rui Yang , Jianuo Fan , Mengtao Sun

Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 43202

PDF (9457KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 43202 DOI: 10.1007/s11467-022-1176-z
TOPICAL REVIEW

Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties

Author information +
History +
PDF (9457KB)

Abstract

Transition metal dichalcogenides (TMDCs) have suitable and adjustable band gaps, high carrier mobility and yield. Layered TMDCs have attracted great attention due to the structure diversity, stable existence in normal temperature environment and the band gap corresponding to wavelength between infrared and visible region. The ultra-thin, flat, almost defect-free surface, excellent mechanical flexibility and chemical stability provide convenient conditions for the construction of different types of TMDCs heterojunctions. The optoelectric properties of heterojunctions based on TMDCs materials are summarized in this review. Special electronic band structures of TMDCs heterojunctions lead to excellent optoelectric properties. The emitter, p-n diodes, photodetectors and photosensitive devices based on TMDCs heterojunction materials show excellent performance. These devices provide a prototype for the design and development of future high-performance optoelectric devices.

Graphical abstract

Keywords

transition metal dichalcogenides (TMDCs) / heterostructures / optoelectric properties

Cite this article

Download citation ▾
Rui Yang, Jianuo Fan, Mengtao Sun. Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202 DOI:10.1007/s11467-022-1176-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K.S. Novoselov, A.K. Geim, S.V. Morozov, D.E. Jiang, Y.Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carbon films. Science , 2004, 306( 5696): 666

[2]

Y.Y. Li, B.Gao, Y.Han, B.K. Chen, J.Y. Huo. Optoelectronic characteristics and application of black phosphorus and its analogs. Front. Phys. , 2021, 16( 4): 44301

[3]

L.Li, Y.Yu, G.J. Ye, Q.Ge, X.Ou, H.Wu, D.Feng, X.H. Chen, Y.Zhang. Black phosphorus field-effect transistors. Nat. Nanotechnol. , 2014, 9( 5): 372

[4]

L.Britnell, R.M. Ribeiro, A.Eckmann, R.Jalil, B.D. Belle, A.Mishchenko, Y.J. Kim, R.V. Gorbachev, T.Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C.Casiraghi, A.H. C. Neto, K.S. Novoselov. Strong light−matter interactions in heterostructures of atomically thin films. Science , 2013, 340( 6138): 1311

[5]

Z.Q. Wang, T.Y. Lü, H.Q. Wang, Y.P. Feng, J.C. Zheng. Review of borophene and its potential applications. Front. Phys. , 2019, 14( 3): 33403

[6]

A.J. Mannix, X.F. Zhou, B.Kiraly, J.D. Wood, D.Alducin, B.D. Myers, X.Liu, B.L. Fisher, U.Santiago, J.R. Guest, M.J. Yacaman, A.Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science , 2015, 350( 6267): 1513

[7]

K.S. Novoselov, D.V. Andreeva, W.Ren, G.Shan. Graphene and other two-dimensional materials. Front. Phys. , 2019, 14( 1): 13301

[8]

G.H. Han D.L. Duong D. H. Keum S.J. Yun Y.H. Lee, van der Waals metallic transition metal dichalcogenides, Chem. Rev. 118(13), 6297 ( 2018)

[9]

A.U. Liyanage, M.M. Lerner. Use of amine electride chemistry to prepare molybdenum disulfide intercalation compounds. RSC Adv. , 2014, 4( 87): 47121

[10]

M.Chhowalla, H.S. Shin, G.Eda, L.J. Li, K.P. Loh, H.Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. , 2013, 5( 4): 263

[11]

Q.Zhao, Y.Guo, Y.Zhou, X.Xu, Z.Ren, J.Bai, X.Xu, Flexibleproperties of monolayer MX2 (M = Tc , anisotropic X = S . Se). J. Phys. Chem. C , 2017, 121( 42): 23744

[12]

M.Abdulsalam D.P. Joubert, Optical spectrum and excitons in bulk and monolayer MX2 (M = Zr, Hf; X = S, Se) , Phys. Status Solidi B 253(4), 705 ( 2016) (b)

[13]

B.Radisavljevic, A.Radenovic, J.Brivio, V.Giacometti, A.Kis. Single-layer MoS2 transistors. Nat. Nanotechnol. , 2011, 6( 3): 147

[14]

O.Lopez-Sanchez, D.Lembke, M.Kayci, A.Radenovic, A.Kis. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. , 2013, 8( 7): 497

[15]

H.Zeng, J.Dai, W.Yao, D.Xiao, X.Cui. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. , 2012, 7( 8): 490

[16]

W.Zhang, C.P. Chuu, J.K. Huang, C.H. Chen, M.L. Tsai, Y.H. Chang, C.T. Liang, Y.Z. Chen, Y.L. Chueh, J.H. He, M.Y. Chou, L.J. Li. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. , 2015, 4( 1): 3826

[17]

C.Cong, J.Shang, X.Wu, B.Cao, N.Peimyoo, C.Qiu, L.Sun, T.Yu. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. , 2014, 2( 2): 131

[18]

T.LaMountain, E.J. Lenferink, Y.J. Chen, T.K. Stanev, N.P. Stern. Environmental engineering of transition metal dichalcogenide optoelectronics. Front. Phys. , 2018, 13( 4): 138114

[19]

Y.Liu, Y.Zhou, H.Zhang, F.Ran, W.Zhao, L.Wang, C.Pei, J.Zhang, X.Huang, H.Li. Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy. Front. Phys. , 2019, 14( 1): 13607

[20]

H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T.Nam, H.Kim, J.H. Kim, S.Ryu, S.Im. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. , 2012, 12( 7): 3695

[21]

M.M. Furchi, A.Pospischil, F.Libisch, J.Burgdörfer, T.Mueller. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. , 2014, 14( 8): 4785

[22]

G.Du, Z.Guo, S.Wang, R.Zeng, Z.Chen, H.Liu. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. , 2010, 46( 7): 1106

[23]

M.Benameur, B.Radisavljevic, J.Héron, S.Sahoo, H.Berger, A.Kis. Visibility of dichalcogenide nanolayers. Nanotechnology , 2011, 22( 12): 125706

[24]

Q.Ji, Y.Zhang, J.Shi, J.Sun, Y.Zhang, Z.Liu. Morphological Engineering of CVD-grown transition metal dichalcogenides for efficient electrochemical hydrogen evolution. Adv. Mater. , 2016, 28( 29): 6207

[25]

S.Imani Yengejeh, W.Wen, Y.Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures. Front. Phys. , 2021, 16( 1): 13502

[26]

X.Hong, J.Kim, S.F. Shi, Y.Zhang, C.Jin, Y.Sun, S.Tongay, J.Wu, Y.Zhang, F.Wang. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. , 2014, 9( 9): 682

[27]

M.L. Tsai, S.H. Su, J.K. Chang, D.S. Tsai, C.H. Chen, C.I. Wu, L.J. Li, L.J. Chen, J.H. He. Monolayer MoS2 heterojunction solar cells. ACS Nano , 2014, 8( 8): 8317

[28]

A.K. Geim, I.V. Grigorieva. Van der Waals heterostructures. Nature , 2013, 499( 7459): 419

[29]

Y.Y. Wang, F.P. Li, W.Wei, B.B. Huang, Y.Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys. , 2021, 16( 1): 13501

[30]

V.O. Özçelik, J.G. Azadani, C.Yang, S.J. Koester, T.Low. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B , 2016, 94( 3): 035125

[31]

Z.Zhou, S.Yuan, J.Wang. Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures. Front. Phys. , 2021, 16( 4): 43203

[32]

D.Wijethunge, L.Zhang, C.Tang, A.Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys. , 2020, 15( 6): 63504

[33]

T.Wang, A.Dong, X.Zhang, R.K. Hocking, C.Sun. Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction. Front. Phys. , 2022, 17( 2): 23501

[34]

C.K. Kanade, H.Seok, V.K. Kanade, K.Aydin, H.U. Kim, S.B. Mitta, W.J. Yoo, T.Kim. Low-temperature and large-scale production of a transition metal sulfide vertical heterostructure and its application for photodetectors. ACS Appl. Mater. Interfaces , 2021, 13( 7): 8710

[35]

J.I. J. Wang, Y.Yang, Y.A. Chen, K.Watanabe, T.Taniguchi, H.O. Churchill, P.Jarillo-Herrero. Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN. Nano Lett. , 2015, 15( 3): 1898

[36]

K.Chen, X.Wan, J.Wen, W.Xie, Z.Kang, X.Zeng, H.Chen, J.B. Xu. Electronic properties of MoS2–WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano , 2015, 9( 10): 9868

[37]

L.Dou, Y.M. Yang, J.You, Z.Hong, W.H. Chang, G.Li, Y.Yang. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. , 2014, 5( 1): 5404

[38]

Z.Yang, Y.Deng, X.Zhang, S.Wang, H.Chen, S.Yang, J.Khurgin, N.X. Fang, X.Zhang, R.Ma. High-performance single-crystalline perovskite thin-film photodetector. Adv. Mater. , 2018, 30( 8): 1704333

[39]

F.Withers, O.Del Pozo-Zamudio, A.Mishchenko, A.P. Rooney, A.Gholinia, K.Watanabe, T.Taniguchi, S.J. Haigh, A.K. Geim, A.I. Tartakovskii, K.S. Novoselov. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. , 2015, 14( 3): 301

[40]

T.Georgiou, R.Jalil, B.D. Belle, L.Britnell, R.V. Gorbachev, S.V. Morozov, Y.J. Kim, A.Gholinia, S.J. Haigh, O.Makarovsky, L.Eaves, L.A. Ponomarenko, A.K. Geim, K.S. Novoselov, A.Mishchenko. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. , 2013, 8( 2): 100

[41]

R.Cheng, D.Li, H.Zhou, C.Wang, A.Yin, S.Jiang, Y.Liu, Y.Chen, Y.Huang, X.Duan. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. , 2014, 14( 10): 5590

[42]

D.Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano , 2014, 8( 2): 1102

[43]

G.Eda, H.Yamaguchi, D.Voiry, T.Fujita, M.Chen, M.Chhowalla. Photoluminescence from chemically exfoliated MoS2. Nano Lett. , 2011, 11( 12): 5111

[44]

Y.Ma, Y.Dai, M.Guo, C.Niu, B.Huang. Graphene adhesion on MoS2 monolayer: An ab initio study. Nanoscale , 2011, 3( 9): 3883

[45]

Z.Huang, C.He, X.Qi, H.Yang, W.Liu, X.Wei, X.Peng, J.Zhong. Band structure engineering of monolayer MoS2 on h-BN: First-principles calculations. J. Phys. D Appl. Phys. , 2014, 47( 7): 075301

[46]

Z.Huang, X.Qi, H.Yang, C.He, X.Wei, X.Peng, J.Zhong. Band-gap engineering of the h-BN/MoS2/h-BN sandwich heterostructure under an external electric field. J. Phys. D Appl. Phys. , 2015, 48( 20): 205302

[47]

W.Yu, S.Li, Y.Zhang, W.Ma, T.Sun, J.Yuan, K.Fu, Q.Bao. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small , 2017, 13( 24): 1700268

[48]

X.Zhao, T.Huang, P.S. Ping, X.Wu, P.Huang, J.Pan, Y.Wu, Z.Cheng. Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors (Basel) , 2018, 18( 7): 2056

[49]

Q.Lv, R.Lv. Two-dimensional heterostructures based on graphene and transition metal dichalcogenides: synthesis, transfer and applications. Carbon , 2019, 145 : 240

[50]

S.Nakamura, M.Senoh, N.Iwasa, S.N. S. i. Nagahama. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn. J. Appl. Phys. , 1995, 34 : L797

[51]

Q.A. Vu, W.J. Yu. Electronics and optoelectronics based on two-dimensional materials. J. Korean Phys. Soc. , 2018, 73( 1): 1

[52]

S.O. Koswatta, S.J. Koester, W.Haensch. On the possibility of obtaining MOSFET-like performance and sub-60-mV/dec swing in 1-D broken-gap tunnel transistors. IEEE Trans. Electron Dev. , 2010, 57( 12): 3222

[53]

Y.Zhang, W.Ma, Y.Cao, J.Huang, Y.Wei, K.Cui, J.Shao. Long wavelength infrared InAs/GaSb superlattice photodetectors with InSb-like and mixed interfaces. IEEE J. Quantum Electron. , 2011, 47( 12): 1475

[54]

Q.Zhao, Y.Guo, K.Si, Z.Ren, J.Bai, X.Xu, Elastic properties of bulk, electronic ZrS2. HfSe2 from van der Waals density-functional theory. physica status solidi (b) , 2017, 254 : 1700033

[55]

Q.Zhao, Y.Guo, Y.Zhou, Z.Yao, Z.Ren, J.Bai, X.Xu, Bandalignments, heterostructuresof monolayer transition metal trichalcogenides MX3 (M= Zr, Hf; X= S, Se)MX2(M= Tc, dichalcogenides X= S. Se) for solar applications. Nanoscale , 2018, 10( 7): 3547

[56]

X.Mu, M.Sun. Interfacial charge transfer exciton enhanced by plasmon in 2D in-plane lateral and van der Waals heterostructures. Appl. Phys. Lett. , 2020, 117( 9): 091601

[57]

J.Fan, J.Song, Y.Cheng, M.Sun. Pressure-dependent interfacial charge transfer excitons in WSe2−MoSe2 heterostructures in near infrared region. Results Phys. , 2021, 24 : 104110

[58]

X.H. Li, Y.X. Guo, Y.Ren, J.J. Peng, J.S. Liu, C.Wang, H.Zhang. Narrow-bandgap materials for optoelectronics applications. Front. Phys. , 2022, 17( 1): 13304

[59]

Z.Z. Yan, Z.H. Jiang, J.P. Lu, Z.H. Ni. Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys. , 2018, 13( 4): 138115

[60]

N.Zhang, J.Wu, T.Yu, J.Lv, H.Liu, X.Xu. Theory, preparation, properties and catalysis application in 2D graphynes-based materials. Front. Phys. , 2021, 16( 2): 23201

[61]

C.Lan, C.Li, S.Wang, T.He, Z.Zhou, D.Wei, H.Guo, H.Yang, Y.Liu. Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures. J. Mater. Chem. C , 2017, 5( 6): 1494

[62]

B.Kang, Y.Kim, W.J. Yoo, C.Lee. Ultrahigh photoresponsive device based on ReS2/graphene heterostructure. Small , 2018, 14( 45): 1802593

[63]

H.Xu, J.Wu, Q.Feng, N.Mao, C.Wang, J.Zhang. High responsivity and gate tunable grapheme-MoS2 hybrid phototransistor. Small , 2014, 10( 11): 2300

[64]

X.Song, X.Liu, D.Yu, C.Huo, J.Ji, X.Li, S.Zhang, Y.Zou, G.Zhu, Y.Wang, M.Wu, A.Xie, H.Zeng. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces , 2018, 10( 3): 2801

[65]

C.Huo, X.Liu, Z.Wang, X.Song, H.Zeng. High-performance low-voltage-driven phototransistors through CsPbBr3–2D crystal van der Waals heterojunctions. Adv. Opt. Mater. , 2018, 6( 16): 1800152

[66]

S.D. Stranks, H.J. Snaith. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. , 2015, 10( 5): 391

[67]

H.S. Jung, N.G. Park. Perovskite solar cells: From materials to devices. Small , 2015, 11( 1): 10

[68]

G.Xing, N.Mathews, S.S. Lim, N.Yantara, X.Liu, D.Sabba, M.Grätzel, S.Mhaisalkar, T.C. Sum. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. , 2014, 13( 5): 476

[69]

H.Kim, L.Zhao, J.S. Price, A.J. Grede, K.Roh, A.N. Brigeman, M.Lopez, B.P. Rand, N.C. Giebink. Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun. , 2018, 9( 1): 4893

[70]

S.Kumar, J.Jagielski, N.Kallikounis, Y.H. Kim, C.Wolf, F.Jenny, T.Tian, C.J. Hofer, Y.C. Chiu, W.J. Stark, T.W. Lee, C.J. Shih. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: Achieving recommendation 2020 color coordinates. Nano Lett. , 2017, 17( 9): 5277

[71]

U.Erkılıç, P.Solís-Fernández, H.G. Ji, K.Shinokita, Y.C. Lin, M.Maruyama, K.Suenaga, S.Okada, K.Matsuda, H.Ago. Vapor phase selective growth of two-dimensional perovskite/WS2 heterostructures for optoelectronic applications. ACS Appl. Mater. Interfaces , 2019, 11( 43): 40503

[72]

C.Palacios-Berraquero, D.M. Kara, A.R. P. Montblanch, M.Barbone, P.Latawiec, D.Yoon, A.K. Ott, M.Loncar, A.C. Ferrari, M.Atatüre. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. , 2017, 8( 1): 15093

[73]

G.D. Shepard, O.Ajayi, X.Li, X.-Y.Zhu, J.Hone, S.Strauf. Nanobubble induced formation of quantum emitters in monolayer semiconductors. 2D Mater. , 2017, 4 : 021019

[74]

F.Peyskens, C.Chakraborty, M.Muneeb, D.Van Thourhout, D.Englund. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. , 2019, 10( 1): 4435

[75]

M.Blauth, M.Jürgensen, G.Vest, O.Hartwig, M.Prechtl, J.Cerne, J.J. Finley, M.Kaniber. Coupling single photons from discrete quantum emitters in WSe2 to lithographically defined plasmonic slot waveguides. Nano Lett. , 2018, 18( 11): 6812

[76]

Y.Luo, G.D. Shepard, J.V. Ardelean, D.A. Rhodes, B.Kim, K.Barmak, J.C. Hone, S.Strauf. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. , 2018, 13( 12): 1137

[77]

F.Withers, O.Del Pozo-Zamudio, S.Schwarz, S.Dufferwiel, P.Walker, T.Godde, A.Rooney, A.Gholinia, C.Woods, P.Blake, S.J. Haigh, K.Watanabe, T.Taniguchi, I.L. Aleiner, A.K. Geim, V.I. Fal’ko, A.I. Tartakovskii, K.S. Novoselov. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett. , 2015, 15( 12): 8223

[78]

J.P. So, H.R. Kim, H.Baek, K.Y. Jeong, H.C. Lee, W.Huh, Y.S. Kim, K.Watanabe, T.Taniguchi, J.Kim, C.H. Lee, H.G. Park. Electrically driven strain-induced deterministic single-photon emitters in a van der Waals heterostructure. Sci. Adv. , 2021, 7( 43): eabj3176

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (9457KB)

2838

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/